找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Univalent Functions and Conformal Mapping; James A. Jenkins Book 1958Latest edition Springer-Verlag Berlin Heidelberg 1958 Analysis.Mappin

[復(fù)制鏈接]
樓主: Amalgam
11#
發(fā)表于 2025-3-23 10:07:14 | 只看該作者
12#
發(fā)表于 2025-3-23 17:31:32 | 只看該作者
13#
發(fā)表于 2025-3-23 20:02:59 | 只看該作者
14#
發(fā)表于 2025-3-24 01:38:30 | 只看該作者
Symmetrization. Multivalent Functions,me effect can be obtained by the method of symmetrization. This method also permits the extension of many results for univalent functions to the case fo multivalent functions. Of course one cannot use the General Coefficient Theorem directly in these situations but . principle again provides an associated quadratic differential.
15#
發(fā)表于 2025-3-24 02:46:56 | 只看該作者
Canonical Conformal Mappings,compactness properties of the families of functions considered. Essentially the same approach has been earlier used by . [65, 70] and . [157] but here the use of the General Coefficient Theorem provides considerable unification and simplification.
16#
發(fā)表于 2025-3-24 10:14:42 | 只看該作者
17#
發(fā)表于 2025-3-24 11:34:14 | 只看該作者
18#
發(fā)表于 2025-3-24 17:21:56 | 只看該作者
19#
發(fā)表于 2025-3-24 20:47:36 | 只看該作者
Canonical Conformal Mappings,o some indications in the case of infinite connectivity. The method employs certain extremal properties of the canonical configurations together with compactness properties of the families of functions considered. Essentially the same approach has been earlier used by . [65, 70] and . [157] but here
20#
發(fā)表于 2025-3-25 00:21:54 | 只看該作者
Applications of the General Coefficient Theorem. Univalent Functions,ny of these, particularly the most elementary ones, there is no mention of homotopy conditions corresponding to those which appear in the General Coefficient Theorem. The reason is that in these cases the homotopy conditions are automatically satisfied.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 21:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴安盟| 莱西市| 舒城县| 昭觉县| 禹城市| 瑞安市| 独山县| 南汇区| 新龙县| 巨鹿县| 神农架林区| 郓城县| 雅江县| 平昌县| 文化| 海盐县| 东平县| 哈巴河县| 雷山县| 通渭县| 石楼县| 临邑县| 会昌县| 高安市| 通城县| 唐河县| 龙泉市| 金秀| 峨边| 游戏| 兴仁县| 白沙| 遵义市| 黎平县| 黑龙江省| 凤凰县| 宁国市| 霍山县| 诏安县| 拜城县| 新田县|