找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Unification of Fractional Calculi with Applications; George A. Anastassiou Book 2022 The Editor(s) (if applicable) and The Author(s), unde

[復制鏈接]
樓主: ISH
21#
發(fā)表于 2025-3-25 04:00:12 | 只看該作者
Vectorial Advanced Hilfer-Prabhakar-Hardy Fractional Inequalities,We present a variety of univariate and multivariate left and right side Hardy type fractional inequalities, many of them under convexity, and other also of . type, ., in the setting of generalized Hilfer and Prabhakar fractional Calculi.
22#
發(fā)表于 2025-3-25 10:46:56 | 只看該作者
Vectorial Prabhakar Hardy Advanced Fractional Inequalities Under Convexity,We present a detailed great variety of Hardy type fractional inequalities under convexity and . norm in the setting of generalized Prabhakar and Hilfer fractional calculi of left and right integrals and derivatives.
23#
發(fā)表于 2025-3-25 12:59:28 | 只看該作者
24#
發(fā)表于 2025-3-25 16:35:11 | 只看該作者
Non Singular Kernel Multiparameter Fractional Differentiation,We introduce here Caputo and Riemann-Liouville type non singular kernel very general multi parameter left and right side fractional derivatives and we prove their continuity.
25#
發(fā)表于 2025-3-25 21:35:50 | 只看該作者
26#
發(fā)表于 2025-3-26 02:57:42 | 只看該作者
Exotic Fractional Integral Inequalities,Here we present a thorough collection of Opial and Hardy type fractional inequalities involving also convexity, based on Luchko’s generalized fractional calculus, and Prabhakar’s partial and mixed of variable degree multivariate fractional integrals.
27#
發(fā)表于 2025-3-26 07:39:52 | 只看該作者
28#
發(fā)表于 2025-3-26 10:42:16 | 只看該作者
Conclusion,During the last 50 years fractional calculus due to its wide applications to many applied sciences has become a main trend in mathematics. Its predominant kinds are the old Riemann-Liouville fractional calculus and the newer one of Caputo type.
29#
發(fā)表于 2025-3-26 14:47:11 | 只看該作者
30#
發(fā)表于 2025-3-26 20:26:31 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-18 01:17
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
六盘水市| 巴青县| 裕民县| 荣昌县| 特克斯县| 遂宁市| 蓬安县| 全州县| 通辽市| 湖口县| 武鸣县| 儋州市| 休宁县| 满城县| 城步| 鹤庆县| 隆子县| 贵港市| 柘荣县| 休宁县| 井研县| 隆尧县| 白银市| 曲周县| 台中市| 宁国市| 芜湖县| 乌鲁木齐市| 高要市| 右玉县| 临夏县| 武鸣县| 喀喇| 炉霍县| 阿拉善盟| 彰化市| 平和县| 泾川县| 淅川县| 清水县| 峡江县|