找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Understand, Manage, and Prevent Algorithmic Bias; A Guide for Business Tobias Baer Book 2019 Tobias Baer 2019 algorithmic bias.decision bia

[復(fù)制鏈接]
樓主: MOTE
11#
發(fā)表于 2025-3-23 13:12:43 | 只看該作者
How Algorithms Debias Decisions the most prevalent biases are. In this chapter, aimed primarily at readers who do not have experience in building algorithms themselves, I will explain how an algorithm works. More specifically, I will show how a . algorithm works and how it thereby can . human bias; in later chapters you then can
12#
發(fā)表于 2025-3-23 15:05:54 | 只看該作者
The Model Development Processl in understanding the many ways biases can creep into algorithms. Also, seasoned data scientists may want to briefly glance at this chapter so that they are aware of my mental frame and terminology since I will be referencing both frequently going forward. One note on terminology: with the advent o
13#
發(fā)表于 2025-3-23 22:04:56 | 只看該作者
14#
發(fā)表于 2025-3-24 00:05:06 | 只看該作者
Data Scientists’ Biasesect data to refute them. Very often, however, there is the data required to keep biases out of the algorithm—but somehow the data scientist lets a bias slip through nevertheless. This chapter looks more closely at this cause of algorithmic bias.
15#
發(fā)表于 2025-3-24 04:40:09 | 只看該作者
16#
發(fā)表于 2025-3-24 09:24:39 | 只看該作者
17#
發(fā)表于 2025-3-24 11:52:45 | 只看該作者
Algorithmic Biases and Social Mediathmic bias occurs: the choice of posts shown to social media users. In doing so, I achieve two objectives: this serves as a case study that shows how the various biases discussed so far can interact and reinforce each other, and it illustrates how algorithmic bias can be dynamic. Rather than set in
18#
發(fā)表于 2025-3-24 14:51:42 | 只看該作者
19#
發(fā)表于 2025-3-24 20:48:10 | 只看該作者
20#
發(fā)表于 2025-3-25 01:15:46 | 只看該作者
How to Detect Algorithmic Biasest nicely, "99 percent of all statistics only tell 49 percent of the story." As a result, a lot of rubbish is said and done because of meaningless numbers showing up in some report. Even if no bad intentions are involved, a poorly calculated or interpreted number can seriously mislead you. This chapt
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 23:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安平县| 托里县| 兴化市| 孙吴县| 于都县| 白山市| 南召县| 高阳县| 托里县| 信宜市| 罗田县| 克什克腾旗| 伊川县| 靖远县| 阿拉善盟| 珠海市| 嘉祥县| 平度市| 确山县| 若羌县| 寿阳县| 德钦县| 溆浦县| 绥棱县| 九台市| 武川县| 抚松县| 建平县| 舟曲县| 商河县| 鄄城县| 和平县| 德保县| 东安县| 成都市| 聂荣县| 德惠市| 通海县| 广饶县| 安顺市| 壶关县|