找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Im; Second International Carole H. Sudre,

[復制鏈接]
樓主: papertrans
21#
發(fā)表于 2025-3-25 03:49:02 | 只看該作者
22#
發(fā)表于 2025-3-25 10:45:40 | 只看該作者
Improving Pathological Distribution Measurements with Bayesian Uncertaintyics the diverse and varying visual features of the original data to enable systematic experiments. With this dataset we demonstrate the robustness of the method by extracting several clinically relevant measurements with two different BNNs. Our results indicate that the distribution estimates are co
23#
發(fā)表于 2025-3-25 15:19:37 | 只看該作者
Uncertainty Estimation for Assessment of 3D US Scan Adequacy and DDH Metric Reliabilitymeasures the variability of estimates generated from an encoder-decoder type CNN optimized for hip joint localization using random dropout. We quantitatively evaluate our proposed uncertainty estimates on a clinical dataset comprising 118 neonates. Results demonstrate smaller variability in dysplasi
24#
發(fā)表于 2025-3-25 16:44:08 | 只看該作者
Clustering-Based Deep Brain MultiGraph Integrator Network for Learning Connectional Brain Templates agnostic to the cumulative estimation error from step to step. This is a key limitation that we addressed by capitalizing on the power of deep learning frameworks residing in learning an . deep mapping using a single objective function to optimize to transform input data into target output data. In
25#
發(fā)表于 2025-3-25 23:41:05 | 只看該作者
Detection of Discriminative Neurological Circuits Using Hierarchical Graph Convolutional Networks inuld identify the affected neurological circuits. We employed two datasets to evaluate the generalizability of the proposed method: ADNI dataset containing 177 AD patients and 115 controls, and Obsessive-Compulsive Disorder (OCD) dataset including 67 patients and 61 controls. The classification accur
26#
發(fā)表于 2025-3-26 00:23:38 | 只看該作者
Graph Matching Based Connectomic Biomarker with Learning for Brain Disordersa graph matching based method to quantify connectomic similarity, which can be trained for diseases at functional systems level to provide a subject-specific biomarker assessing the disease. We validate our measure on a dataset of patients with traumatic brain injury and demonstrate that our measure
27#
發(fā)表于 2025-3-26 05:15:53 | 只看該作者
Multi-scale Profiling of Brain Multigraphs by Eigen-Based Cross-diffusion and Heat Tracing for Brains kernel-based or graph distance editing methods, which fail to simultaneously satisfy graph scalability, node- and permutation-invariance criteria. To address these limitations and while cross-pollinating the fields of spectral graph theory and diffusion models, we unprecedentedly propose an eigen-
28#
發(fā)表于 2025-3-26 10:33:49 | 只看該作者
29#
發(fā)表于 2025-3-26 12:38:57 | 只看該作者
30#
發(fā)表于 2025-3-26 17:15:16 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 01:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
兰西县| 千阳县| 翁牛特旗| 巧家县| 丹凤县| 紫阳县| 方正县| 河池市| 湄潭县| 武鸣县| 喀什市| 靖安县| 岳普湖县| 平塘县| 三穗县| 廊坊市| 泰来县| 甘南县| 河北区| 扬州市| 广汉市| 关岭| 凤凰县| 太康县| 许昌市| 柘荣县| 赣榆县| 阜城县| 麻阳| 双辽市| 砚山县| 香河县| 都匀市| 安泽县| 天峻县| 谷城县| 彰武县| 高碑店市| 武功县| 大洼县| 攀枝花市|