找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging; 4th International Wo Carole H. Sudre,Christian F. Baumgartner,Will

[復制鏈接]
樓主: 請回避
41#
發(fā)表于 2025-3-28 17:52:13 | 只看該作者
Improved Post-hoc Probability Calibration for?Out-of-Domain MRI Segmentationdeep networks interpretable, by aligning prediction probability with the actual accuracy in test data. In image segmentation, well-calibrated probabilities allow radiologists to identify regions where model-predicted segmentations are unreliable. These unreliable predictions often occur to out-of-do
42#
發(fā)表于 2025-3-28 22:33:01 | 只看該作者
Improving Error Detection in Deep Learning Based Radiotherapy Autocontouring Using Bayesian Uncertaiond to inaccurate regions. To help speed up the mandatory quality assessment (QA) of contours in radiotherapy, these heatmaps could be used as stimuli to direct visual attention of clinicians to potential inaccuracies. In practice, this is non-trivial to achieve since many accurate regions also exhi
43#
發(fā)表于 2025-3-29 00:56:54 | 只看該作者
Stochastic Weight Perturbations Along the Hessian: A Plug-and-Play Method to Compute Uncertaintys. The predominant method to generating uncertainty scores is to utilize a Bayesian formulation of deep learning. In this paper, we present a plug-and-play method to obtain samples from an already optimized model. Specifically, we present a simple, albeit principled methodology, to generate a number
44#
發(fā)表于 2025-3-29 03:49:35 | 只看該作者
Calibration of Deep Medical Image Classifiers: An Empirical Comparison Using Dermatology and Histopa Mis-calibration is the deviation between predictive probability (confidence) and classification correctness. Well-calibrated classifiers enable cost-sensitive and selective decision-making. This paper presents an empirical investigation of calibration methods on two medical image datasets (multi-cl
45#
發(fā)表于 2025-3-29 08:57:47 | 只看該作者
46#
發(fā)表于 2025-3-29 12:08:41 | 只看該作者
Generalized Probabilistic U-Net for?Medical Image Segementationas the latent space distribution that can better approximate the uncertainty in the reference segmentations. We study the effect the choice of latent space distribution has on capturing the uncertainty in the reference segmentations using the LIDC-IDRI dataset. We show that the choice of distributio
47#
發(fā)表于 2025-3-29 17:34:22 | 只看該作者
Joint Paraspinal Muscle Segmentation and Inter-rater Labeling Variability Prediction with Multi-taskrly understood musculoskeletal disorder in adults. Accurate paraspinal muscle segmentation from MRI is crucial to enable new image-based biomarkers for the diagnosis and prognosis of LBP. Manual segmentation is laborious and time-consuming. In addition, high individual anatomical variations also pos
48#
發(fā)表于 2025-3-29 23:03:50 | 只看該作者
Information Gain Sampling for?Active Learning in?Medical Image Classificationing large datasets. Unlabelled datasets are easier to obtain, and in many contexts, it would be feasible for an expert to provide labels for a small subset of images. This work presents an information-theoretic active learning framework that guides the optimal selection of images from the unlabelled
49#
發(fā)表于 2025-3-30 01:59:14 | 只看該作者
50#
發(fā)表于 2025-3-30 07:47:50 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 06:38
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
扶风县| 凤山县| 凤台县| 渝北区| 松溪县| 温宿县| 西华县| 新民市| 河津市| 东山县| 荃湾区| 林口县| 天峨县| 惠州市| 苗栗市| 遵化市| 常州市| 浦县| 衡山县| 个旧市| 财经| 霍州市| 奉贤区| 青阳县| 托克托县| 平江县| 三台县| 龙山县| 连云港市| 东辽县| 新闻| 日照市| 梨树县| 万盛区| 唐山市| 东兴市| 施甸县| 富裕县| 合江县| 定襄县| 湖口县|