找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ulam Type Stability; Janusz Brzd?k,Dorian Popa,Themistocles M. Rassias Book 2019 Springer Nature Switzerland AG 2019 Ulam’s type stability

[復制鏈接]
樓主: grateful
11#
發(fā)表于 2025-3-23 09:41:14 | 只看該作者
Miscellanea About the Stability of Functional Equations,The interesting details about the stability, the superstability, the inverse stability, the absolute stability and the stability in a class for a functional equation, for a system, and the alternation of functional equations, about the approximation of approximation and about the nearness of two approximations are given.
12#
發(fā)表于 2025-3-23 17:57:19 | 只看該作者
A Fixed Point Theorem in Uniformizable Spaces,We provide a fixed point theorem in uniformizable spaces, extending former results of G. L. Forti, and of J. Brzdek.
13#
發(fā)表于 2025-3-23 21:49:45 | 只看該作者
Ulam Stability of Zero Point Equations,In this paper, we will study different kind of Ulam stability concepts for the zero point equation. Our approach is based on weakly Picard operator theory related to fixed point and coincidence point equations.
14#
發(fā)表于 2025-3-23 22:29:47 | 只看該作者
Semi-Inner Products and Parapreseminorms on Groups and a Generalization of a Theorem of Maksa and VBy using inner products and paraprenorms on groups, we prove a natural generalization of a basic theorem of Gyula Maksa and Peter Volkmann on additive functions.
15#
發(fā)表于 2025-3-24 05:46:21 | 只看該作者
16#
發(fā)表于 2025-3-24 08:07:38 | 只看該作者
Janusz Brzd?k,Dorian Popa,Themistocles M. RassiasPresents up-to-date research and information on Ulam’s stability of linear and nonlinear operators.Includes a number of open problems.Features a variety of approaches for problems that lack stability
17#
發(fā)表于 2025-3-24 12:15:11 | 只看該作者
18#
發(fā)表于 2025-3-24 15:52:09 | 只看該作者
https://doi.org/10.1007/978-3-030-28972-0Ulam’s type stability; Functional Equations; polynomial functional equations; differential operators; op
19#
發(fā)表于 2025-3-24 21:33:51 | 只看該作者
20#
發(fā)表于 2025-3-25 02:36:28 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-17 17:25
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
怀安县| 弥渡县| 册亨县| 肃北| 庆城县| 镇沅| 永年县| 洛南县| 新干县| 姜堰市| 龙海市| 威海市| 阿拉尔市| 青阳县| 白河县| 资中县| 阿合奇县| 长沙市| 阳城县| 元氏县| 余姚市| 宜章县| 尚义县| 微山县| 肃北| 花莲县| 岑溪市| 秦安县| 铜陵市| 会东县| 达尔| 府谷县| 微博| 兴城市| 宁波市| 宝丰县| 大姚县| 淮阳县| 荥经县| 鄂托克旗| 若尔盖县|