找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

1234
返回列表
打印 上一主題 下一主題

Titlebook: Topological Nonlinear Analysis II; Degree, Singularity Michele Matzeu,Alfonso Vignoli Conference proceedings 1997 Birkh?user Boston 1997 D

[復(fù)制鏈接]
樓主: polysomnography
31#
發(fā)表于 2025-3-27 00:09:58 | 只看該作者
Degree for Gradient Equivariant Maps and Equivariant Conley Index,ifferent from 0 on the boundary of Ω, then there is defined an integer Deg(., Ω) — the Brouwer (or topological) degree of . with respect to Ω. Obviously, if in the place of all continuos maps and all open bounded subsets of ?. we take a smaller class of maps and/or a smaller class of subsets then we
32#
發(fā)表于 2025-3-27 02:34:22 | 只看該作者
Variations and Irregularities,al and physical objects, possibly very “irregular” or “degenerate.”.We will first recall some classic notions. Selfadjoint extensions of differential operators, generalized derivatives, finite difference schemes. We will then describe a few important metric, variational and measure theoretic tools,
33#
發(fā)表于 2025-3-27 05:52:52 | 只看該作者
Singularity Theory and Bifurcation Phenomena in Differential Equations,ll perturbations, i.e., to find those functions . which have the property that any nearby smooth function . . is diffeomorphically equivalent to .. This reduces to a local problem, and then to the problem of studying the Taylor expansion of . and trying to determine which terms of the expansion guar
34#
發(fā)表于 2025-3-27 12:40:55 | 只看該作者
35#
發(fā)表于 2025-3-27 15:01:05 | 只看該作者
36#
發(fā)表于 2025-3-27 19:50:28 | 只看該作者
1234
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 08:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安陆市| 新干县| 凤阳县| 秭归县| 青海省| 石狮市| 文水县| 五华县| 崇州市| 县级市| 洛扎县| 五莲县| 中阳县| 文登市| 桂林市| 青州市| 阜康市| 南丹县| 和田县| 分宜县| 太保市| 小金县| 包头市| 松潘县| 怀安县| 漯河市| 荔波县| 乡宁县| 常州市| 彭山县| 嘉荫县| 昭平县| 邵阳县| 类乌齐县| 封丘县| 达日县| 阜新市| 东至县| 北碚区| 乌什县| 襄垣县|