找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Topological Nonlinear Analysis; Degree, Singularity, Michele Matzeu,Alfonso Vignoli Book 1995 Birkh?user Boston 1995 Eigenvalue.bifurcation

[復(fù)制鏈接]
樓主: 誓約
11#
發(fā)表于 2025-3-23 12:26:27 | 只看該作者
https://doi.org/10.1007/978-1-4612-2570-6Eigenvalue; bifurcation; convergence; dynamical systems; hamiltonian system; manifold; singularity; stabili
12#
發(fā)表于 2025-3-23 16:50:02 | 只看該作者
Topological Bifurcation,parameters will be reviewed, with “necessary” and sufficient conditions for bifurcation, both local and global, and the structure of the bifurcation set will be studied. The case of equivariant bifurcation will be considered, with a special application to the case of abelian groups.
13#
發(fā)表于 2025-3-23 21:59:32 | 只看該作者
978-1-4612-7584-8Birkh?user Boston 1995
14#
發(fā)表于 2025-3-23 23:24:14 | 只看該作者
15#
發(fā)表于 2025-3-24 02:37:00 | 只看該作者
16#
發(fā)表于 2025-3-24 10:09:37 | 只看該作者
17#
發(fā)表于 2025-3-24 11:27:06 | 只看該作者
Positivity of Maps and Applications,and try to limit the intersection with Nussbaum’s survey [38]. We emphasize results which depend upon fixed point arguments. We also, at times, discuss applications to ordinary and partial differential equations. We do not discuss applications to delay equations. These are important but they tend to
18#
發(fā)表于 2025-3-24 17:46:55 | 只看該作者
19#
發(fā)表于 2025-3-24 21:40:01 | 只看該作者
Critical Point Theory and Applications to Differential Equations: A Survey,urred during the past 20–25 years. This is too broad a theme for a single survey and we will focus on three particular areas. First we will examine contributions to the minimax approach to critical point theory. In particular the Mountain Pass Theorem, the Saddle Point Theorem, and variants thereupo
20#
發(fā)表于 2025-3-25 00:35:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 18:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
砀山县| 陇川县| 秭归县| 德保县| 林西县| 交城县| 无极县| 留坝县| 沅陵县| 科尔| 鄂温| 池州市| 临沧市| 沿河| 郓城县| 中阳县| 德兴市| 东丰县| 峨眉山市| 双桥区| 成都市| 迁安市| 丰台区| 孙吴县| 思南县| 屯昌县| 乌拉特前旗| 湾仔区| 从江县| 抚顺市| 池州市| 石家庄市| 万山特区| 柯坪县| 乐山市| 社会| 仁寿县| 永善县| 通州市| 潜江市| 靖州|