找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Topological Groups and Related Structures, An Introduction to Topological Algebra.; Alexander Arhangel’skii,Mikhail Tkachenko Book 2008 At

[復(fù)制鏈接]
查看: 12336|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:13:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Topological Groups and Related Structures, An Introduction to Topological Algebra.
編輯Alexander Arhangel’skii,Mikhail Tkachenko
視頻videohttp://file.papertrans.cn/927/926383/926383.mp4
叢書(shū)名稱(chēng)Atlantis Studies in Mathematics
圖書(shū)封面Titlebook: Topological Groups and Related Structures, An Introduction to Topological Algebra.;  Alexander Arhangel’skii,Mikhail Tkachenko Book 2008 At
描述Algebraandtopology,thetwofundamentaldomainsofmathematics,playcomplem- tary roles. Topology studies continuity and convergence and provides a general framework to study the concept of a limit. Much of topology is devoted to handling in?nite sets and in?nity itself; the methods developed are qualitative and, in a certain sense, irrational. - gebra studies all kinds of operations and provides a basis for algorithms and calculations. Very often, the methods here are ?nitistic in nature. Because of this difference in nature, algebra and topology have a strong tendency to develop independently, not in direct contact with each other. However, in applications, in higher level domains of mathematics, such as functional analysis, dynamical systems, representation theory, and others, topology and algebra come in contact most naturally. Many of the most important objects of mathematics represent a blend of algebraic and of topologicalstructures. Topologicalfunctionspacesandlineartopologicalspacesingeneral, topological groups and topological ?elds, transformation groups, topological lattices are objects of this kind. Very often an algebraic structure and a topology come naturally together; this
出版日期Book 2008
關(guān)鍵詞Area; Scope; algebra; cardinal invariant; cardinal invariants; compactness; construction; eXist; interface; k
版次1
doihttps://doi.org/10.2991/978-94-91216-35-0
isbn_ebook978-94-91216-35-0Series ISSN 1875-7634 Series E-ISSN 2215-1885
issn_series 1875-7634
copyrightAtlantis Press and the authors 2008
The information of publication is updating

書(shū)目名稱(chēng)Topological Groups and Related Structures, An Introduction to Topological Algebra.影響因子(影響力)




書(shū)目名稱(chēng)Topological Groups and Related Structures, An Introduction to Topological Algebra.影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Topological Groups and Related Structures, An Introduction to Topological Algebra.網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Topological Groups and Related Structures, An Introduction to Topological Algebra.網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Topological Groups and Related Structures, An Introduction to Topological Algebra.被引頻次




書(shū)目名稱(chēng)Topological Groups and Related Structures, An Introduction to Topological Algebra.被引頻次學(xué)科排名




書(shū)目名稱(chēng)Topological Groups and Related Structures, An Introduction to Topological Algebra.年度引用




書(shū)目名稱(chēng)Topological Groups and Related Structures, An Introduction to Topological Algebra.年度引用學(xué)科排名




書(shū)目名稱(chēng)Topological Groups and Related Structures, An Introduction to Topological Algebra.讀者反饋




書(shū)目名稱(chēng)Topological Groups and Related Structures, An Introduction to Topological Algebra.讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:49:41 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:29:05 | 只看該作者
地板
發(fā)表于 2025-3-22 08:18:37 | 只看該作者
Introduction to Topological Groups and Semigroups,
5#
發(fā)表于 2025-3-22 09:26:11 | 只看該作者
6#
發(fā)表于 2025-3-22 15:21:25 | 只看該作者
7#
發(fā)表于 2025-3-22 17:54:51 | 只看該作者
Actions of Topological Groups on Topological Spaces,
8#
發(fā)表于 2025-3-22 21:29:44 | 只看該作者
Topological Groups and Related Structures, An Introduction to Topological Algebra.
9#
發(fā)表于 2025-3-23 04:52:37 | 只看該作者
10#
發(fā)表于 2025-3-23 08:19:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 23:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉峪关市| 西乌珠穆沁旗| 宜良县| 汉源县| 运城市| 获嘉县| 潼关县| 嘉黎县| 来宾市| 濉溪县| 夹江县| 辽源市| 盖州市| 习水县| 枞阳县| 沅陵县| 乌兰浩特市| 黎川县| 八宿县| 饶河县| 昭通市| 阳泉市| 肇庆市| SHOW| 义马市| 葵青区| 东台市| 兴文县| 玉门市| 长宁区| 宁明县| 南岸区| 东乌| 石家庄市| 渝中区| 谢通门县| 杨浦区| 巴彦淖尔市| 五河县| 绥芬河市| 霍邱县|