找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Topics in m-adic Topologies; Silvio Greco,Paolo Salmon Book 1971 Springer-Verlag Berlin · Heidelberg 1971 Topologies.algebra.algebraic geo

[復(fù)制鏈接]
樓主: 候選人名單
11#
發(fā)表于 2025-3-23 11:50:56 | 只看該作者
Unique factorization of m-completions,Let . be an integral domain. We say that . is . (or a Unique Factorization Domain) if every element . ∈ . ≠ 0 and non-unit, has an essentially unique decomposition in irreducible factors. Here “essentially” means “up to unit factors and permutations of the factors”.
12#
發(fā)表于 2025-3-23 17:39:14 | 只看該作者
13#
發(fā)表于 2025-3-23 19:03:06 | 只看該作者
14#
發(fā)表于 2025-3-23 22:25:19 | 只看該作者
Analytic reducedness,In this section we shall give some sufficient conditions for the reducedness of ?-adic completions which are related to the radical of the completion of an ideal. ..
15#
發(fā)表于 2025-3-24 05:48:40 | 只看該作者
Normality of m-completions,Let . a ring and . a subring of .. An element . ∈. is said to be . over . if there are .,..., . ∈. such that . + ··· + . + . . (. > 0). The ring . is said to be . if every element of . which is integral over . is an element of .. Finally a domain . is said to be . if . is integrally closed in its quotient field.
16#
發(fā)表于 2025-3-24 06:47:05 | 只看該作者
17#
發(fā)表于 2025-3-24 12:42:52 | 只看該作者
Completions of filtered groups, rings and modules. Applications to m-adic topologies,.. It is clear that .(.) = ∞ if and only if . (lemma 1.1). The mapping allows us to define a . in .: let . be the mapping defined by .(.) = . (we agree that . = 0). Then it is easy to see that . and that . defines in . the topology induced by the filtration (.).
18#
發(fā)表于 2025-3-24 17:15:10 | 只看該作者
19#
發(fā)表于 2025-3-24 22:25:02 | 只看該作者
20#
發(fā)表于 2025-3-25 02:08:18 | 只看該作者
Silvio Greco,Paolo Salmonhey have wherein they have lavished out their words freely hath been so long, that they know we cannot catch hold of them to pull them out and they think that we will not write to reprove their lying lips.”. Two decades later, Constantia Munda also wrote scornfully of men, “And Printing, that was in
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 00:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
顺义区| 钦州市| 西和县| 德钦县| 松滋市| 凉城县| 松桃| 福州市| 赤峰市| 库尔勒市| 长丰县| 临洮县| 迁安市| 辽阳市| 广西| 大石桥市| 新兴县| 南平市| 哈密市| 定陶县| 博爱县| 忻州市| 陆河县| 河津市| 休宁县| 南澳县| 女性| 临潭县| 慈利县| 金川县| 林周县| 新昌县| 凌云县| 尤溪县| 衡南县| 增城市| 鲁甸县| 东安县| 太仓市| 辉县市| 桦南县|