找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234
返回列表
打印 上一主題 下一主題

Titlebook: Topics in Fixed Point Theory; Saleh Almezel,Qamrul Hasan Ansari,Mohamed Amine Kh Book 2014 Springer International Publishing Switzerland 2

[復(fù)制鏈接]
樓主: DIGN
31#
發(fā)表于 2025-3-26 22:27:30 | 只看該作者
Banach Contraction Principle and Its Generalizations,s one of the most important results of analysis and considered as the main source of metric fixed point theory. It is the most widely applied fixed point result in many branches of mathematics because it requires the structure of complete metric space with contractive condition on the map which is e
32#
發(fā)表于 2025-3-27 03:04:02 | 只看該作者
33#
發(fā)表于 2025-3-27 05:50:26 | 只看該作者
Fixed Point Theory in Hyperconvex Metric Spaces,l Fixed Point Theory. Hyperconvex metric spaces were introduced by Aronszajn and Panitchpakdi in 1956 in relation to the problem of extending uniformly continuous mappings defined between metric spaces. It was obvious from the very beginning that the structure given by the hyperconvexity of the metr
34#
發(fā)表于 2025-3-27 11:24:23 | 只看該作者
35#
發(fā)表于 2025-3-27 17:31:49 | 只看該作者
Fixed Point Theory in Ordered Sets from the Metric Point of View,ime that metric ideas and concepts could be defined in discrete sets. In particular one can show that graphs or order preserving maps are exactly the class of nonexpansive mappings defined on metric spaces. Pouzet and his students Jawhari and Misane were able to build on Quilliot’s ideas to establis
36#
發(fā)表于 2025-3-27 21:19:27 | 只看該作者
1234
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 19:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘肃省| 青冈县| 修武县| 左贡县| 鄂伦春自治旗| 凉城县| 定安县| 禄丰县| 田东县| 葫芦岛市| 柳林县| 辰溪县| 沭阳县| 彭阳县| 西乡县| 宁波市| 喀什市| 长乐市| 雅江县| 东明县| 娄烦县| 浦江县| 六盘水市| 阜南县| 西宁市| 平阴县| 哈巴河县| 厦门市| 万安县| 琼结县| 长治市| 泗水县| 米林县| 衡水市| 蒙城县| 忻城县| 株洲市| 甘泉县| 通州区| 南和县| 崇义县|