找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness; Wojciech S. O?ański Book 2019 Springer Nature Switzerl

[復(fù)制鏈接]
查看: 35550|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:00:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness
編輯Wojciech S. O?ański
視頻videohttp://file.papertrans.cn/917/916053/916053.mp4
概述Provides a simple proof of the classical Caffarelli-Kohn-Nirenberg theorem with brevity and completeness.Promotes understanding of Scheffer’s constructions by providing streamlined proofs based on his
叢書名稱Advances in Mathematical Fluid Mechanics
圖書封面Titlebook: The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness;  Wojciech S. O?ański Book 2019 Springer Nature Switzerl
描述This monograph focuses on the partial regularity theorem, as developed by Caffarelli, Kohn, and Nirenberg (CKN), and offers a proof of the upper bound on the Hausdorff dimension of the singular set of weak solutions of the Navier-Stokes inequality, while also providing a clear and insightful presentation of Scheffer’s constructions showing their bound cannot be improved. A short, complete, and self-contained proof of CKN is presented in the second chapter, allowing the remainder of the book to be fully dedicated to a topic of central importance: the sharpness result of Scheffer. Chapters three and four contain a highly readable proof of this result, featuring new improvements as well. Researchers in mathematical fluid mechanics, as well as those working in partial differential equations more generally, will find this monograph invaluable..
出版日期Book 2019
關(guān)鍵詞Cafarelli-Kohn-Nirenberg partial regularity theorem; Caffarelli-Kohn-Nirenberg book; Caffarelli-Kohn-N
版次1
doihttps://doi.org/10.1007/978-3-030-26661-5
isbn_softcover978-3-030-26660-8
isbn_ebook978-3-030-26661-5Series ISSN 2297-0320 Series E-ISSN 2297-0339
issn_series 2297-0320
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness影響因子(影響力)




書目名稱The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness影響因子(影響力)學(xué)科排名




書目名稱The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness網(wǎng)絡(luò)公開度




書目名稱The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness被引頻次




書目名稱The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness被引頻次學(xué)科排名




書目名稱The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness年度引用




書目名稱The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness年度引用學(xué)科排名




書目名稱The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness讀者反饋




書目名稱The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:01:51 | 只看該作者
Book 2019 and four contain a highly readable proof of this result, featuring new improvements as well. Researchers in mathematical fluid mechanics, as well as those working in partial differential equations more generally, will find this monograph invaluable..
板凳
發(fā)表于 2025-3-22 03:52:23 | 只看該作者
地板
發(fā)表于 2025-3-22 07:24:34 | 只看該作者
Advances in Mathematical Fluid Mechanicshttp://image.papertrans.cn/t/image/916053.jpg
5#
發(fā)表于 2025-3-22 09:48:37 | 只看該作者
6#
發(fā)表于 2025-3-22 14:31:06 | 只看該作者
7#
發(fā)表于 2025-3-22 17:16:17 | 只看該作者
The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness978-3-030-26661-5Series ISSN 2297-0320 Series E-ISSN 2297-0339
8#
發(fā)表于 2025-3-23 01:15:00 | 只看該作者
Wojciech S. O?ańskiProvides a simple proof of the classical Caffarelli-Kohn-Nirenberg theorem with brevity and completeness.Promotes understanding of Scheffer’s constructions by providing streamlined proofs based on his
9#
發(fā)表于 2025-3-23 04:33:36 | 只看該作者
10#
發(fā)表于 2025-3-23 09:06:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 23:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
敖汉旗| 德令哈市| 和林格尔县| 娱乐| 修文县| 阜南县| 台湾省| 江孜县| 钟山县| 如皋市| 荆州市| 安达市| 谢通门县| 资兴市| 日喀则市| 即墨市| 浦东新区| 微山县| 平南县| 怀来县| 保定市| 凉山| 柘城县| 渝中区| 宁城县| 扶余县| 陇川县| 新巴尔虎右旗| 南安市| 鸡泽县| 准格尔旗| 阆中市| 逊克县| 清徐县| 江永县| 礼泉县| 石河子市| 密山市| 龙井市| 油尖旺区| 安塞县|