找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Nonlinear Limit-Point/Limit-Circle Problem; Miroslav Bartu?ek,Zuzana Do?lá,John R. Graef Book 2004 Birkh?user Boston 2004 Derivative.O

[復(fù)制鏈接]
查看: 38585|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:25:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Nonlinear Limit-Point/Limit-Circle Problem
編輯Miroslav Bartu?ek,Zuzana Do?lá,John R. Graef
視頻videohttp://file.papertrans.cn/916/915086/915086.mp4
概述Contains more than 25 open problems for future research.More than 120 references that provide up-to-date resources
圖書封面Titlebook: The Nonlinear Limit-Point/Limit-Circle Problem;  Miroslav Bartu?ek,Zuzana Do?lá,John R. Graef Book 2004 Birkh?user Boston 2004 Derivative.O
描述.First posed by Hermann Weyl in 1910, the limit–point/limit–circle problem has inspired, over the last century, several new developments in the asymptotic analysis of nonlinear differential equations. This self-contained monograph traces the evolution of this problem from its inception to its modern-day extensions to the study of deficiency indices and analogous properties for nonlinear equations. ...The book opens with a discussion of the problem in the linear case, as Weyl originally stated it, and then proceeds to a generalization for nonlinear higher-order equations. En route, the authors distill the classical theorems for second and higher-order linear equations, and carefully map the progression to nonlinear limit–point results. The relationship between the limit–point/limit–circle properties and the boundedness, oscillation, and convergence of solutions is explored, and in the final chapter, the connection between limit–point/limit–circle problems and spectral theory is examined in detail....With over 120 references, many open problems, and illustrative examples, this work will be valuable to graduate students and researchers in differential equations, functional analysis, o
出版日期Book 2004
關(guān)鍵詞Derivative; Operator theory; Sturm–Liouville theory; differential equation; functional analysis; ordinary
版次1
doihttps://doi.org/10.1007/978-0-8176-8218-7
isbn_softcover978-0-8176-3562-6
isbn_ebook978-0-8176-8218-7
copyrightBirkh?user Boston 2004
The information of publication is updating

書目名稱The Nonlinear Limit-Point/Limit-Circle Problem影響因子(影響力)




書目名稱The Nonlinear Limit-Point/Limit-Circle Problem影響因子(影響力)學(xué)科排名




書目名稱The Nonlinear Limit-Point/Limit-Circle Problem網(wǎng)絡(luò)公開度




書目名稱The Nonlinear Limit-Point/Limit-Circle Problem網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱The Nonlinear Limit-Point/Limit-Circle Problem被引頻次




書目名稱The Nonlinear Limit-Point/Limit-Circle Problem被引頻次學(xué)科排名




書目名稱The Nonlinear Limit-Point/Limit-Circle Problem年度引用




書目名稱The Nonlinear Limit-Point/Limit-Circle Problem年度引用學(xué)科排名




書目名稱The Nonlinear Limit-Point/Limit-Circle Problem讀者反饋




書目名稱The Nonlinear Limit-Point/Limit-Circle Problem讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:26:35 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:56:13 | 只看該作者
地板
發(fā)表于 2025-3-22 08:34:16 | 只看該作者
5#
發(fā)表于 2025-3-22 09:44:09 | 只看該作者
yl in 1910, the limit–point/limit–circle problem has inspired, over the last century, several new developments in the asymptotic analysis of nonlinear differential equations. This self-contained monograph traces the evolution of this problem from its inception to its modern-day extensions to the stu
6#
發(fā)表于 2025-3-22 15:03:47 | 只看該作者
7#
發(fā)表于 2025-3-22 18:16:30 | 只看該作者
8#
發(fā)表于 2025-3-22 21:54:28 | 只看該作者
between limit–point/limit–circle problems and spectral theory is examined in detail....With over 120 references, many open problems, and illustrative examples, this work will be valuable to graduate students and researchers in differential equations, functional analysis, o978-0-8176-3562-6978-0-8176-8218-7
9#
發(fā)表于 2025-3-23 02:03:37 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:08:09 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
砚山县| 承德县| 凌海市| 迁西县| 昌邑市| 靖边县| 翁源县| 措勤县| 平乡县| 军事| 邵阳市| 霍林郭勒市| 宜春市| 襄汾县| 乐亭县| 京山县| 西丰县| 荃湾区| 商南县| 钟山县| 金华市| 宁明县| 兴义市| 来安县| 西平县| 海原县| 伊金霍洛旗| 秦皇岛市| 遵义县| 奉贤区| 巨野县| 布拖县| 壤塘县| 普定县| 南部县| 云安县| 永寿县| 平乡县| 水城县| 湖口县| 闸北区|