找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ten Physical Applications of Spectral Zeta Functions; Emilio Elizalde Book 2012Latest edition Springer-Verlag Berlin Heidelberg 2012 Casim

[復(fù)制鏈接]
查看: 38118|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:21:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Ten Physical Applications of Spectral Zeta Functions
編輯Emilio Elizalde
視頻videohttp://file.papertrans.cn/904/903011/903011.mp4
概述Authored by a leading expert in the field.Tutorial and self-contained presentation.Contains both theory and applications.Includes supplementary material:
叢書名稱Lecture Notes in Physics
圖書封面Titlebook: Ten Physical Applications of Spectral Zeta Functions;  Emilio Elizalde Book 2012Latest edition Springer-Verlag Berlin Heidelberg 2012 Casim
描述.Zeta-function regularization is a powerful method in perturbation theory, and this book is a comprehensive guide for the student of this subject. Everything is explained in detail, in particular the mathematical difficulties and tricky points, and several applications are given to show how the procedure works in practice, for example in the Casimir effect, gravity and string theory, high-temperature phase transition, topological symmetry breaking, and non-commutative spacetime. The formulae, some of which are new, can be directly applied in creating physically meaningful, accurate numerical calculations. The book acts both as a basic introduction and a collection of exercises for those who want to apply this regularization procedure in practice..?Thoroughly revised, updated and expanded, this new edition includes novel, explicit formulas on the general quadratic, the Chowla-Selberg series case, an interplay with the Hadamard calculus, and also features a fresh chapter on recent cosmological applications, including the calculation of the vacuum energy fluctuations at large scale in braneworld and other models..
出版日期Book 2012Latest edition
關(guān)鍵詞Casimir physics; Elliptic partial differential operators; Regularization and renormalization; Spectral
版次2
doihttps://doi.org/10.1007/978-3-642-29405-1
isbn_softcover978-3-642-29404-4
isbn_ebook978-3-642-29405-1Series ISSN 0075-8450 Series E-ISSN 1616-6361
issn_series 0075-8450
copyrightSpringer-Verlag Berlin Heidelberg 2012
The information of publication is updating

書目名稱Ten Physical Applications of Spectral Zeta Functions影響因子(影響力)




書目名稱Ten Physical Applications of Spectral Zeta Functions影響因子(影響力)學(xué)科排名




書目名稱Ten Physical Applications of Spectral Zeta Functions網(wǎng)絡(luò)公開度




書目名稱Ten Physical Applications of Spectral Zeta Functions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Ten Physical Applications of Spectral Zeta Functions被引頻次




書目名稱Ten Physical Applications of Spectral Zeta Functions被引頻次學(xué)科排名




書目名稱Ten Physical Applications of Spectral Zeta Functions年度引用




書目名稱Ten Physical Applications of Spectral Zeta Functions年度引用學(xué)科排名




書目名稱Ten Physical Applications of Spectral Zeta Functions讀者反饋




書目名稱Ten Physical Applications of Spectral Zeta Functions讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:09:14 | 只看該作者
第103011主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:34:28 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:16:51 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:06:58 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:42:28 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:17:49 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:46:03 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:02:34 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:01:56 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 23:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江油市| 遂川县| 抚顺县| 蚌埠市| 齐河县| 孝义市| 淅川县| 托里县| 滕州市| 肇源县| 建德市| 蒙城县| 洛阳市| 利津县| 宁强县| 新郑市| 兴化市| 宝兴县| 高要市| 鸡东县| 宜兰市| 阿克| 体育| 施秉县| 肥西县| 大田县| 南溪县| 旌德县| 易门县| 海兴县| 平塘县| 锡林浩特市| 双城市| 唐河县| 邵阳县| 金平| 时尚| 绩溪县| 慈溪市| 宁乡县| 横山县|