找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Seminaire de Probabilites XXII; Jacques Azéma,Marc Yor,Paul André Meyer Book 1988 Springer-Verlag GmbH Germany, part of Springer Nature 19

[復(fù)制鏈接]
樓主: Maculate
11#
發(fā)表于 2025-3-23 11:07:23 | 只看該作者
12#
發(fā)表于 2025-3-23 16:51:41 | 只看該作者
13#
發(fā)表于 2025-3-23 20:03:00 | 只看該作者
The statistical equilibrium of an isotropic stochastic flow with negative lyapounov exponents is trgeneous and isotropic, and if either the covariance is smooth and the top Lyapounov exponent is strictly negative, or if the flow is “of coalescing type” (these phenomena can only occur when d≤3), then ..=0 a.s.
14#
發(fā)表于 2025-3-24 01:56:18 | 只看該作者
The statistical equilibrium of an isotropic stochastic flow with negative lyapounov exponents is tr with ..=m, which converges almost surely to a random measure ?., called the statistical equilibrium. We prove here that if the flow is spatially homogeneous and isotropic, and if either the covariance is smooth and the top Lyapounov exponent is strictly negative, or if the flow is “of coalescing ty
15#
發(fā)表于 2025-3-24 02:39:08 | 只看該作者
16#
發(fā)表于 2025-3-24 08:23:20 | 只看該作者
17#
發(fā)表于 2025-3-24 12:57:10 | 只看該作者
18#
發(fā)表于 2025-3-24 18:39:50 | 只看該作者
P. McGill,B. Rajeev,B. V. Raotain approximation sequences in the strong operator topology. The basic observations in this chapter are four theorems (Lemma 2.1, Theorem 2.5, Proposition 2.17, Theorem 2.7) whose proofs are unfortunately rather technical and not very instructive. For that reason we have separated these proofs from
19#
發(fā)表于 2025-3-24 19:54:27 | 只看該作者
20#
發(fā)表于 2025-3-24 23:11:52 | 只看該作者
Jacques Azéma,Marc Yor,Paul André Meyerts established researchers by organizing and presenting the profusion of advanced material disseminated in the literature. Most chapters are accompanied by exercises, many of which are solved explicitly.".978-3-319-70705-1978-3-319-70706-8Series ISSN 2038-5714 Series E-ISSN 2532-3318
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛川县| 金寨县| 出国| 水富县| 旅游| 壤塘县| 巩义市| 常宁市| 淳安县| 邢台县| 拜城县| 青冈县| 焉耆| 宜兰市| 新巴尔虎右旗| 襄垣县| 句容市| 瑞昌市| 葫芦岛市| 清水河县| 和林格尔县| 沽源县| 叙永县| 巩留县| 中江县| 驻马店市| 休宁县| 崇明县| 安图县| 错那县| 南汇区| 广宁县| 治多县| 湘乡市| 瓮安县| 河北区| 凤冈县| 永仁县| 阿克陶县| 沂南县| 清远市|