找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Synthetic Data for Deep Learning; Sergey I. Nikolenko Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license t

[復(fù)制鏈接]
樓主: CLIP
31#
發(fā)表于 2025-3-26 20:59:48 | 只看該作者
32#
發(fā)表于 2025-3-27 02:31:17 | 只看該作者
Synthetic Simulated Environments,hat can be used either to generate synthetic datasets on the fly or provide learning environments for reinforcement learning agents. We discuss datasets and simulations for outdoor environments (mostly for autonomous driving), indoor environments, and physics-based simulations for robotics. We also
33#
發(fā)表于 2025-3-27 06:58:59 | 只看該作者
Synthetic Data Outside Computer Vision,ntirely dependent on synthetic data. In this chapter, we survey some of these fields. Specifically, Section?. discusses how structured synthetic data is used for fraud and intrusion detection and other applications in the form of network and/or system logs; in Section?., we consider neural programmi
34#
發(fā)表于 2025-3-27 10:53:46 | 只看該作者
35#
發(fā)表于 2025-3-27 15:40:08 | 只看該作者
Synthetic-to-Real Domain Adaptation and Refinement,r, we give a survey of domain adaptation approaches that have been used for synthetic-to-real adaptation, that is, methods for making models trained on synthetic data work well on real data, which is almost always the end goal. We distinguish two main approaches. In . input synthetic data is modifie
36#
發(fā)表于 2025-3-27 20:57:53 | 只看該作者
37#
發(fā)表于 2025-3-28 00:25:25 | 只看該作者
38#
發(fā)表于 2025-3-28 03:47:05 | 只看該作者
Deep Neural Networks for Computer Vision, and new ones appearing up to this day. In this chapter, we discuss the most popular architectures for computer vision, concentrating mainly on ideas rather than specific models. We also discuss the first step towards synthetic data for computer vision: data augmentation.
39#
發(fā)表于 2025-3-28 09:26:21 | 只看該作者
Directions in Synthetic Data Development,c data from real images by cutting and pasting (Section?.), and finally possibilities to produce synthetic data by generative models (Section?.). The latter means generating useful synthetic data from scratch rather than domain adaptation and refinement, which we consider in a separate Chapter?..
40#
發(fā)表于 2025-3-28 12:42:53 | 只看該作者
Privacy Guarantees in Synthetic Data,in this regard can be provided by the framework of differential privacy. We give a brief introduction to differential privacy, its relation to machine learning, and the guarantees that it can provide for synthetic data generation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 22:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大埔区| 垦利县| 大邑县| 德阳市| 藁城市| 九龙县| 杂多县| 无为县| 霞浦县| 普兰县| 邛崃市| 老河口市| 双牌县| 阜南县| 洱源县| 石首市| 延川县| 明水县| 年辖:市辖区| 邢台县| 浦北县| 英吉沙县| 广宁县| 郯城县| 双辽市| 都匀市| 辽阳市| 阳谷县| 无锡市| 天柱县| 吴川市| 隆尧县| 固始县| 得荣县| 东阳市| 太仆寺旗| 凤城市| 宁晋县| 东方市| 镇雄县| 桓仁|