找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Synchronization; Theory and Applicati Arkady Pikovsky,Yuri Maistrenko Book 2003 Springer Science+Business Media Dordrecht 2003 Counter.Phas

[復(fù)制鏈接]
樓主: Destruct
21#
發(fā)表于 2025-3-25 04:39:11 | 只看該作者
22#
發(fā)表于 2025-3-25 10:49:42 | 只看該作者
Basic Principles of Direct Chaotic Communications,modulation methods applicable in direct chaotic schemes. Signal processing in noncoherent and coherent receivers is discussed. The efficiency of direct chaotic communications is investigated by means of numerical simulation. Potential application areas are analyzed, including multiple access systems
23#
發(fā)表于 2025-3-25 12:54:40 | 只看該作者
24#
發(fā)表于 2025-3-25 19:29:22 | 只看該作者
Generalization of the Feigenbaum-Kadanoff-Shenker Renormalization and Critical Phenomena Associatedal behavior are discussed, which may occur at the onset of chaotic or strange nonchaotic attractors via quasiperiodicity at the golden-mean frequency ratio. Parameter space arrangement and respective scaling properties are discussed and illustrated.
25#
發(fā)表于 2025-3-25 21:04:29 | 只看該作者
26#
發(fā)表于 2025-3-26 01:25:43 | 只看該作者
27#
發(fā)表于 2025-3-26 06:58:52 | 只看該作者
Synchrony in Globally Coupled Chaotic, Periodic, and Mixed Ensembles of Dynamical Units,eneral ensembles of heterogeneous, continuous time dynamical units that, when uncoupled, are chaotic, periodic, or a mixture of both. A discussion of convergence issues, important for the proper implementation of our method, is included. Our work leads to a quantitative prediction for the critical c
28#
發(fā)表于 2025-3-26 09:56:01 | 只看該作者
Phase Synchronization of Regular and Chaotic Self-Sustained Oscillators,locking, we extend the notion of phase to autonoumous continuous-time . systems. Using as examples the well-known Lorenz and R ? ssler oscillators, we describe the phase synchronization of chaotic oscillators by periodic external force. Both statistical and topological aspects of this phenomenon are
29#
發(fā)表于 2025-3-26 13:02:00 | 只看該作者
30#
發(fā)表于 2025-3-26 19:58:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 15:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
监利县| 镇平县| 彩票| 墨竹工卡县| 南投县| 井陉县| 金溪县| 雷波县| 包头市| 高邑县| 弥勒县| 吉木萨尔县| 十堰市| 赣州市| 临潭县| 柳江县| 文安县| 大新县| 哈尔滨市| 历史| 云梦县| 阿克苏市| 乐陵市| 拜城县| 将乐县| 石景山区| 化州市| 运城市| 宜阳县| 麦盖提县| 收藏| 萨迦县| 孝义市| 宁明县| 聂荣县| 廊坊市| 曲周县| 靖江市| 威信县| 万全县| 建湖县|