找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Synchronization of Integral and Fractional Order Chaotic Systems; A Differential Algeb Rafael Martínez-Guerra,Claudia A. Pérez-Pinacho,Gi B

[復制鏈接]
樓主: 臉紅
21#
發(fā)表于 2025-3-25 05:30:23 | 只看該作者
Book 2015 systems. This is achieved using a combination of analytic, algebraic, geometrical and asymptotical methods to tackle the dynamical feedback stabilization problem. In particular, differential-geometric and algebraic differential concepts reveal important structural properties of chaotic systems and
22#
發(fā)表于 2025-3-25 10:22:27 | 只看該作者
1860-0832 plications and examples.Includes supplementary material: This book provides a general overview of several concepts of synchronization and brings together related approaches to secure communication in chaotic systems. This is achieved using a combination of analytic, algebraic, geometrical and asympt
23#
發(fā)表于 2025-3-25 12:41:47 | 只看該作者
Generalized Synchronization for a Class of Nondifferentially Flat and Liouvillian Chaotic Systems,ents in a differential field. Finally, we construct a dynamical control obtained through a chain of integrators to reach the GS. This is illustrated by means of numerical simulations to show the effectiveness of the methodology proposed.
24#
發(fā)表于 2025-3-25 17:42:04 | 只看該作者
25#
發(fā)表于 2025-3-25 21:52:31 | 只看該作者
Secure Communications and Synchronization via a Sliding-Mode Observer,munication scheme is robust with respect to some disturbances and uncertainties. Three chaotic systems, the Duffing equation, Van der Pol oscillator, andChua’s circuit, are provided to illustrate the effectiveness of the chaotic communication.
26#
發(fā)表于 2025-3-26 04:08:09 | 只看該作者
27#
發(fā)表于 2025-3-26 07:54:22 | 只看該作者
28#
發(fā)表于 2025-3-26 09:21:22 | 只看該作者
29#
發(fā)表于 2025-3-26 16:03:14 | 只看該作者
30#
發(fā)表于 2025-3-26 17:06:46 | 只看該作者
https://doi.org/10.1007/978-3-319-15284-4Algebraic and Geometric Methods in Control Theory; Fractional Derivatives and Fractional Order System
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-20 11:14
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
青州市| 伊川县| 吴江市| 麻城市| 博爱县| 灯塔市| 芦溪县| 正蓝旗| 扎赉特旗| 南乐县| 墨玉县| 瓦房店市| 松原市| 山阳县| 富顺县| 通河县| 万盛区| 溧水县| 融水| 枣强县| 温宿县| 安阳县| 尼木县| 平南县| 保康县| 肃南| 黄大仙区| 文水县| 江北区| 三穗县| 静宁县| 佛山市| 元阳县| 商洛市| 澄江县| 天津市| 平邑县| 昌乐县| 大田县| 玉林市| 武隆县|