找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Synchronization of Integral and Fractional Order Chaotic Systems; A Differential Algeb Rafael Martínez-Guerra,Claudia A. Pérez-Pinacho,Gi B

[復(fù)制鏈接]
樓主: 臉紅
21#
發(fā)表于 2025-3-25 05:30:23 | 只看該作者
Book 2015 systems. This is achieved using a combination of analytic, algebraic, geometrical and asymptotical methods to tackle the dynamical feedback stabilization problem. In particular, differential-geometric and algebraic differential concepts reveal important structural properties of chaotic systems and
22#
發(fā)表于 2025-3-25 10:22:27 | 只看該作者
1860-0832 plications and examples.Includes supplementary material: This book provides a general overview of several concepts of synchronization and brings together related approaches to secure communication in chaotic systems. This is achieved using a combination of analytic, algebraic, geometrical and asympt
23#
發(fā)表于 2025-3-25 12:41:47 | 只看該作者
Generalized Synchronization for a Class of Nondifferentially Flat and Liouvillian Chaotic Systems,ents in a differential field. Finally, we construct a dynamical control obtained through a chain of integrators to reach the GS. This is illustrated by means of numerical simulations to show the effectiveness of the methodology proposed.
24#
發(fā)表于 2025-3-25 17:42:04 | 只看該作者
25#
發(fā)表于 2025-3-25 21:52:31 | 只看該作者
Secure Communications and Synchronization via a Sliding-Mode Observer,munication scheme is robust with respect to some disturbances and uncertainties. Three chaotic systems, the Duffing equation, Van der Pol oscillator, andChua’s circuit, are provided to illustrate the effectiveness of the chaotic communication.
26#
發(fā)表于 2025-3-26 04:08:09 | 只看該作者
27#
發(fā)表于 2025-3-26 07:54:22 | 只看該作者
28#
發(fā)表于 2025-3-26 09:21:22 | 只看該作者
29#
發(fā)表于 2025-3-26 16:03:14 | 只看該作者
30#
發(fā)表于 2025-3-26 17:06:46 | 只看該作者
https://doi.org/10.1007/978-3-319-15284-4Algebraic and Geometric Methods in Control Theory; Fractional Derivatives and Fractional Order System
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 18:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泸西县| 疏附县| 额济纳旗| 平定县| 大悟县| 长沙县| 武宣县| 丹阳市| 卫辉市| 鸡泽县| 湛江市| 秦皇岛市| 七台河市| 湘西| 桐梓县| 万荣县| 广东省| 高邑县| 宜章县| 石嘴山市| 松潘县| 赤峰市| 古丈县| 克山县| 贺兰县| 桐庐县| 宜川县| 应用必备| 兴国县| 石泉县| 镇巴县| 泸西县| 武功县| 通道| 平武县| 务川| 涿州市| 金沙县| 麻江县| 新化县| 忻城县|