找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Symplectic Geometry of Integrable Hamiltonian Systems; Michèle Audin,Ana Cannas Silva,Eugene Lerman Textbook 2003 Springer Basel AG 2003 D

[復(fù)制鏈接]
樓主: AMASS
31#
發(fā)表于 2025-3-26 21:29:02 | 只看該作者
Lagrangian and special Lagrangian immersions in Cnth a non degenerate alternated bilinear form (§I.1) and use this “symplectic structure” to define Lagrangian subspaces and immersions (§§I.2, I.3 and I.4). Later, I use the complex structure as well, to define.Lagrangian immersions (§I.5)
32#
發(fā)表于 2025-3-27 04:38:22 | 只看該作者
Lagrangian and special Lagrangian submanifolds in Symplectic and Calabi-Yau manifoldsold has a neighbourhood which is diffeomorphic to a neighbourhood of the zero section in its cotangent bundle. To be precise and explicit, we need to define a symplectic structure on the cotangent bundles and more generally to say what a symplectic structure on a manifold is
33#
發(fā)表于 2025-3-27 05:30:54 | 只看該作者
Proof of Theorem I.38t manifold . is 3-dimensional and dim . > 3. If dim. = 3 we will argue directly using slices that the orbit space.is homeomorphic to a closed interval [0, 1] and then use this to compute the integral cohomology of.. This will show that . cannot be homeomorphic to
34#
發(fā)表于 2025-3-27 10:20:40 | 只看該作者
35#
發(fā)表于 2025-3-27 13:54:14 | 只看該作者
Textbook 2003ngian submanifolds and integrable systems, the special Lagrangians. Furthermore, integrable Hamiltonian systems on punctured cotangent bundles are a starting point for the study of contact toric manifolds (Part C of this book)..
36#
發(fā)表于 2025-3-27 21:14:36 | 只看該作者
Introductioney and Lawson [18]. They have become very fashionable recently, after the work of McLean [25], leading to the beautiful speculations of Strominger, Yau and Zaslow [32] and the remarkable papers of Hitchin [19, 20] and Donaldson [11]
37#
發(fā)表于 2025-3-27 22:30:10 | 只看該作者
Lagrangian and special Lagrangian immersions in Cnth a non degenerate alternated bilinear form (§I.1) and use this “symplectic structure” to define Lagrangian subspaces and immersions (§§I.2, I.3 and I.4). Later, I use the complex structure as well, to define.Lagrangian immersions (§I.5)
38#
發(fā)表于 2025-3-28 03:28:16 | 只看該作者
Lagrangian and special Lagrangian submanifolds in Symplectic and Calabi-Yau manifoldsold has a neighbourhood which is diffeomorphic to a neighbourhood of the zero section in its cotangent bundle. To be precise and explicit, we need to define a symplectic structure on the cotangent bundles and more generally to say what a symplectic structure on a manifold is
39#
發(fā)表于 2025-3-28 09:04:39 | 只看該作者
40#
發(fā)表于 2025-3-28 10:39:26 | 只看該作者
Symplectic ViewpointIn order to define symplectic toric manifolds, we begin by introducing the basic objects in symplectic/hamiltonian geometry/mechanics which lead to their consideration. Our discussion centers around moment maps
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 05:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吕梁市| 凌源市| 禄丰县| 长沙县| 闻喜县| 肥东县| 行唐县| 浮山县| 大化| 迁西县| 同仁县| 新竹市| 白水县| 姚安县| 当阳市| 柘荣县| 漠河县| 博客| 怀柔区| 三明市| 体育| 滦南县| 潼南县| 黄石市| 四子王旗| 礼泉县| 吴川市| 长丰县| 来凤县| 临城县| 阿拉善左旗| 顺昌县| 聂拉木县| 浦城县| 龙游县| 邵武市| 扶沟县| 西充县| 肥乡县| 汉中市| 商丘市|