找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Survival Analysis: State of the Art; John P. Klein,Prem K. Goel Book 1992 Springer Science+Business Media B.V. 1992 Estimator.Radiologiein

[復(fù)制鏈接]
樓主: HEIR
31#
發(fā)表于 2025-3-26 21:40:12 | 只看該作者
Kernel Density Estimation from Record-Breaking Dataments. Here, for such record-breaking data, kernel density estimation is considered. For a single record-breaking sample, consistent estimation is not possible except in the extreme tails of the distribution. Hence, replication is required, and for m such independent record-breaking samples, the ker
32#
發(fā)表于 2025-3-27 03:35:34 | 只看該作者
Semiparametric Estimation Of Parametric Hazard Ratesmetric ones are sometimes too biased while the nonparametric ones are sometimes too variable. There should therefore be scope for methods that somehow try to combine parametric and nonparametric features. In the present paper three semiparametric approaches to hazard rate estimation are presented. T
33#
發(fā)表于 2025-3-27 08:26:09 | 只看該作者
Cox-Type Regression Analysis for Large Numbers of Small Groups of Correlated Failure Time Observatioure time observations, we show that the standard maximum partial likelihood estimate of the regression coefficient in the Cox model is still consistent and asymptotically normal. However, the corresponding standard variance-covariance estimate may no longer be valid due to the dependence among membe
34#
發(fā)表于 2025-3-27 09:31:28 | 只看該作者
35#
發(fā)表于 2025-3-27 17:06:02 | 只看該作者
36#
發(fā)表于 2025-3-27 20:40:04 | 只看該作者
37#
發(fā)表于 2025-3-27 23:04:22 | 只看該作者
38#
發(fā)表于 2025-3-28 05:59:30 | 只看該作者
Bayesian Computations in Survival Models Via the Gibbs Samplerperspective, these features combine to create difficult computational problems by seeming to require (multi-dimensional) numerical integrals over awkwardly defined regions. This paper illustrates how these apparent difficulties can be overcome, in both parametric and nonparametric settings, by the Gibbs sampler approach to Bayesian computation.
39#
發(fā)表于 2025-3-28 09:13:52 | 只看該作者
40#
發(fā)表于 2025-3-28 10:53:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 00:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
都江堰市| 桓台县| 电白县| 香港 | 府谷县| 兴海县| 连江县| 泰州市| 石景山区| 潜山县| 遵化市| 凌云县| 醴陵市| 离岛区| 宝应县| 临潭县| 满城县| 永泰县| 佛山市| 吉木乃县| 淅川县| 丹寨县| 邯郸市| 青阳县| 利川市| 贞丰县| 乃东县| 黄骅市| 藁城市| 舒城县| 舞阳县| 翁源县| 孝感市| 团风县| 天门市| 铅山县| 嘉荫县| 长兴县| 泰和县| 潜山县| 龙胜|