找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Superschool on Derived Categories and D-branes; Edmonton, Canada, Ju Matthew Ballard,Charles Doran,Eric Sharpe Conference proceedings 2018

[復(fù)制鏈接]
樓主: MEDAL
21#
發(fā)表于 2025-3-25 05:23:54 | 只看該作者
Batyrev Mirror Symmetryolytopes. We revisit the example of the quintic threefold in this language, and briefly mention connections with later developments, such as the Batyrev–Borisov construction for complete intersections in Fano toric varieties, and the Gross–Siebert program.
22#
發(fā)表于 2025-3-25 10:47:09 | 只看該作者
Introduction to Homological Mirror Symmetry, so that the properties of . associated to the complex structure (e.g. periods, bounded derived category of coherent sheaves) reproduce properties of . associated to its symplectic structure (e.g. counts of pseudo holomorphic curves and discs).
23#
發(fā)表于 2025-3-25 14:02:40 | 只看該作者
Introduction to Topological String Theories to give a main idea of topological string theories as one of examples of mirror symmetry without any technical details. This means that some definitions are somewhat mathematically less rigorous but we rather show intuitive analyses instead. Readers should be familiar with GR, QFT, SUSY, CFT and some basics of string theories.
24#
發(fā)表于 2025-3-25 18:16:12 | 只看該作者
25#
發(fā)表于 2025-3-25 22:48:49 | 只看該作者
26#
發(fā)表于 2025-3-26 00:23:02 | 只看該作者
27#
發(fā)表于 2025-3-26 06:15:47 | 只看該作者
28#
發(fā)表于 2025-3-26 11:28:28 | 只看該作者
29#
發(fā)表于 2025-3-26 14:50:13 | 只看該作者
Introduction to Symplectic Geometry and Fukaya CategoryWe give a brief introduction to symplectic manifolds and Fukaya Category in this manuscript.
30#
發(fā)表于 2025-3-26 17:40:08 | 只看該作者
The SYZ Conjecture via Homological Mirror SymmetryThese are expanded notes based on a talk given at the Superschool on Derived Categories and .-branes held at the University of Alberta in July of 2016. The goal of these notes is to give a motivated introduction to the Strominger-Yau-Zaslow (SYZ) conjecture from the point of view of homological mirror symmetry.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 05:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蒲城县| 昌平区| 武宁县| 彩票| 信丰县| 若羌县| 定兴县| 航空| 兴和县| 高尔夫| 漳州市| 斗六市| 中西区| 金乡县| 永吉县| 甘德县| 常山县| 西充县| 临安市| 神木县| 永和县| 包头市| 通州区| 呈贡县| 黄大仙区| 冷水江市| 共和县| 三河市| 西青区| 布拖县| 云阳县| 浏阳市| 叙永县| 平果县| 镇平县| 梅河口市| 图们市| 府谷县| 崇礼县| 宁津县| 广水市|