找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Superschool on Derived Categories and D-branes; Edmonton, Canada, Ju Matthew Ballard,Charles Doran,Eric Sharpe Conference proceedings 2018

[復(fù)制鏈接]
樓主: MEDAL
21#
發(fā)表于 2025-3-25 05:23:54 | 只看該作者
Batyrev Mirror Symmetryolytopes. We revisit the example of the quintic threefold in this language, and briefly mention connections with later developments, such as the Batyrev–Borisov construction for complete intersections in Fano toric varieties, and the Gross–Siebert program.
22#
發(fā)表于 2025-3-25 10:47:09 | 只看該作者
Introduction to Homological Mirror Symmetry, so that the properties of . associated to the complex structure (e.g. periods, bounded derived category of coherent sheaves) reproduce properties of . associated to its symplectic structure (e.g. counts of pseudo holomorphic curves and discs).
23#
發(fā)表于 2025-3-25 14:02:40 | 只看該作者
Introduction to Topological String Theories to give a main idea of topological string theories as one of examples of mirror symmetry without any technical details. This means that some definitions are somewhat mathematically less rigorous but we rather show intuitive analyses instead. Readers should be familiar with GR, QFT, SUSY, CFT and some basics of string theories.
24#
發(fā)表于 2025-3-25 18:16:12 | 只看該作者
25#
發(fā)表于 2025-3-25 22:48:49 | 只看該作者
26#
發(fā)表于 2025-3-26 00:23:02 | 只看該作者
27#
發(fā)表于 2025-3-26 06:15:47 | 只看該作者
28#
發(fā)表于 2025-3-26 11:28:28 | 只看該作者
29#
發(fā)表于 2025-3-26 14:50:13 | 只看該作者
Introduction to Symplectic Geometry and Fukaya CategoryWe give a brief introduction to symplectic manifolds and Fukaya Category in this manuscript.
30#
發(fā)表于 2025-3-26 17:40:08 | 只看該作者
The SYZ Conjecture via Homological Mirror SymmetryThese are expanded notes based on a talk given at the Superschool on Derived Categories and .-branes held at the University of Alberta in July of 2016. The goal of these notes is to give a motivated introduction to the Strominger-Yau-Zaslow (SYZ) conjecture from the point of view of homological mirror symmetry.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 07:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
礼泉县| 象山县| 鄂伦春自治旗| 宣武区| 阳信县| 海淀区| 依安县| 鞍山市| 江川县| 满城县| 陆丰市| 上虞市| 陆良县| 石城县| 亚东县| 中西区| 松阳县| 巴塘县| 龙海市| 吉木萨尔县| 汶川县| 东辽县| 齐齐哈尔市| 呼伦贝尔市| 红原县| 竹北市| 阿城市| 正阳县| 涪陵区| 体育| 临江市| 太谷县| 崇义县| 延吉市| 铜鼓县| 绵竹市| 五原县| 余江县| 乌拉特中旗| 漳平市| 安泽县|