找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Supermathematics and its Applications in Statistical Physics; Grassmann Variables Franz Wegner Book 2016 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: 次要
21#
發(fā)表于 2025-3-25 04:35:55 | 只看該作者
Grassmann AnalysisDifferentiation and integration of Grassmann variables are introduced. Application is made to Gauss integrals. A second part to exterior algebra follows.
22#
發(fā)表于 2025-3-25 09:57:55 | 只看該作者
23#
發(fā)表于 2025-3-25 13:46:20 | 只看該作者
24#
發(fā)表于 2025-3-25 19:30:10 | 只看該作者
Two-Dimensional Ising ModelThe solution of the two-dimensional Ising model on the square lattice is presented. The logarithmic divergence of the specific heat at the critical point is derived. The boundary tension in the ordered phase is determined. Duality arguments allow the determination of the exponential decay of the spin-spin correlation in the paramagnetic phase.
25#
發(fā)表于 2025-3-25 23:07:40 | 只看該作者
26#
發(fā)表于 2025-3-26 00:43:22 | 只看該作者
Supersymmetric MatricesThe generalization of symmetric and anti-symmetric matrices to supermatrices is introduced. The Gauss integral over both even and odd variables yields the superpfaffian. Orthosymplectic transformations and groups are generalizations of the orthogonal transformations and groups.
27#
發(fā)表于 2025-3-26 05:23:15 | 只看該作者
28#
發(fā)表于 2025-3-26 08:43:29 | 只看該作者
Superreal Matrices, Unitary-Orthosymplectic GroupsThere are no real odd elements under the conjugation of the second kind. However, the introduction of pairs of odd elements (spinors) in matrices allows the definition of superreal supermatrices. The corresponding unitary-orthosymplectic group and its pseudo-form are introduced.
29#
發(fā)表于 2025-3-26 14:40:20 | 只看該作者
30#
發(fā)表于 2025-3-26 20:01:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 14:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
小金县| 鱼台县| 交城县| 盐津县| 汉阴县| 海宁市| 雷波县| 当涂县| 惠州市| 沐川县| 葵青区| 苏尼特右旗| 公安县| 汤阴县| 扬州市| 柳河县| 清河县| 芷江| 当雄县| 开江县| 福贡县| 辰溪县| 泗阳县| 庆安县| 罗源县| 娱乐| 蒲江县| 三门峡市| 阜阳市| 木兰县| 紫阳县| 会昌县| 襄樊市| 靖远县| 龙南县| 龙里县| 永丰县| 无棣县| 新源县| 昌平区| 宁陵县|