找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Structural, Syntactic, and Statistical Pattern Recognition; Joint IAPR Internati Andrea Torsello,Luca Rossi,Antonio Robles-Kelly Conference

[復制鏈接]
樓主: intern
31#
發(fā)表于 2025-3-27 00:11:49 | 只看該作者
Graph Transformer: Learning Better Representations for Graph Neural Networksnt connections well and form better representations for graphs. Moreover, the proposed Graph Transformer with Mixed Network (GTMN) can learn both local and global information simultaneously. Experiments on standard graph classification benchmarks demonstrate that our proposed approach performs better when compared with other competing methods.
32#
發(fā)表于 2025-3-27 01:56:01 | 只看該作者
Estimating the Manifold Dimension of a Complex Network Using Weyl’s Lawlf-similarity. Through an extensive set of experiments on both synthetic and real-world networks we show that our approach is able to correctly estimate the manifold dimension. We compare this with alternative methods to compute the fractal dimension and we show that our approach yields a better estimate on both synthetic and real-world examples.
33#
發(fā)表于 2025-3-27 06:04:08 | 只看該作者
34#
發(fā)表于 2025-3-27 11:48:20 | 只看該作者
35#
發(fā)表于 2025-3-27 16:01:07 | 只看該作者
LGL-GNN: Learning Global and Local Information for Graph Neural Networkssmoothing problem when the depth of the neural networks increases, and the introduction of motif for local convolution can better learn local neighborhood features with strong connectivity. Finally, our experiments on standard graph classification benchmarks prove the effectiveness of the model.
36#
發(fā)表于 2025-3-27 21:51:13 | 只看該作者
Conference proceedings 20212020, held in Padua, Italy, in January 2021...The 35 papers presented in this volume were carefully reviewed and selected from 81 submissions...The accepted papers cover the major topics of current interest in pattern recognition, including classification and clustering, deep learning, structural ma
37#
發(fā)表于 2025-3-27 23:02:57 | 只看該作者
38#
發(fā)表于 2025-3-28 03:22:57 | 只看該作者
Exponential Weighted Moving Average of Time Series in Arbitrary Spaces with Application to Stringsl case of weighted mean computation. We develop three computation methods. In addition to the direct computation in the original space, we particularly study an approach to embedding the data items of a time series into vector space. The feasibility of our EWMA computation framework is exemplarily demonstrated on strings.
39#
發(fā)表于 2025-3-28 06:28:44 | 只看該作者
40#
發(fā)表于 2025-3-28 13:56:23 | 只看該作者
0302-9743 s...The accepted papers cover the major topics of current interest in pattern recognition, including classification and clustering, deep learning, structural matching and graph-theoretic methods, and multimedia analysis and understanding..978-3-030-73972-0978-3-030-73973-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 03:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
屏东县| 焉耆| 景谷| 高安市| 临西县| 登封市| 涞源县| 瑞昌市| 左云县| 麻江县| 合肥市| 密山市| 西藏| 德安县| 五家渠市| 昭通市| 光泽县| 青龙| 五莲县| 邯郸市| 渑池县| 靖远县| 南澳县| 津南区| 桃源县| 化隆| 二连浩特市| 汉沽区| 曲阜市| 织金县| 巢湖市| 得荣县| 津南区| 开鲁县| 临湘市| 丰都县| 化隆| 清涧县| 临夏市| 博客| 北川|