找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Structural Wood Detailing in CAD Format; K. A. Zayat Book 1993 Springer Science+Business Media New York 1993 TJI.computer-aided design (CA

[復(fù)制鏈接]
樓主: iniquity
11#
發(fā)表于 2025-3-23 09:43:18 | 只看該作者
12#
發(fā)表于 2025-3-23 17:17:44 | 只看該作者
13#
發(fā)表于 2025-3-23 18:15:55 | 只看該作者
K. A. Zayatiguity, inaccuracy, incompleteness and roughness. Accordingly, many different mathematical models for dealing with these uncertainties, like probability, fuzzy set theory, Dempster-Shafer theory of evidence and rough set theory, have been introduced and also applied with great success in many fields
14#
發(fā)表于 2025-3-23 23:13:27 | 只看該作者
K. A. Zayatiguity, inaccuracy, incompleteness and roughness. Accordingly, many different mathematical models for dealing with these uncertainties, like probability, fuzzy set theory, Dempster-Shafer theory of evidence and rough set theory, have been introduced and also applied with great success in many fields
15#
發(fā)表于 2025-3-24 03:59:53 | 只看該作者
16#
發(fā)表于 2025-3-24 08:41:42 | 只看該作者
17#
發(fā)表于 2025-3-24 13:17:26 | 只看該作者
if ..?≡?5 mod 103 has any solutions. Since 5 is not congruent to 3 mod 4, the quadratic reciprocity law asserts that ..?≡?5 mod 103 and ..?≡?103 mod 5 are both solvable or both not. But solution of the latter congruence reduces to ..?≡?3 mod 5, which clearly has no solutions. Hence neither does ..?≡
18#
發(fā)表于 2025-3-24 15:15:18 | 只看該作者
K. A. Zayat in Sect.?. we begin with a discussion of the results from algebraic number theory that will be required, with Dedekind’s Ideal Distribution Theorem as the final goal of this section. The zeta function of an algebraic number field is defined and studied in Sect.?.; in particular, the Euler-Dedekind
19#
發(fā)表于 2025-3-24 20:17:13 | 只看該作者
20#
發(fā)表于 2025-3-25 00:56:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 04:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石门县| 宣化县| 大连市| 文登市| 壤塘县| 汉川市| 麻江县| 会同县| 托克逊县| 华容县| 民县| 新沂市| 莱西市| 专栏| 苍梧县| 永泰县| 疏勒县| 新野县| 巴林左旗| 武义县| 金川县| 新昌县| 新津县| 垦利县| 杂多县| 寻乌县| 玛曲县| 海伦市| 荔波县| 浙江省| 宜宾县| 鞍山市| 建平县| 滁州市| 衡东县| 西吉县| 武强县| 松阳县| 弋阳县| 应城市| 兴义市|