找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Structural Wood Detailing in CAD Format; K. A. Zayat Book 1993 Springer Science+Business Media New York 1993 TJI.computer-aided design (CA

[復(fù)制鏈接]
樓主: iniquity
11#
發(fā)表于 2025-3-23 09:43:18 | 只看該作者
12#
發(fā)表于 2025-3-23 17:17:44 | 只看該作者
13#
發(fā)表于 2025-3-23 18:15:55 | 只看該作者
K. A. Zayatiguity, inaccuracy, incompleteness and roughness. Accordingly, many different mathematical models for dealing with these uncertainties, like probability, fuzzy set theory, Dempster-Shafer theory of evidence and rough set theory, have been introduced and also applied with great success in many fields
14#
發(fā)表于 2025-3-23 23:13:27 | 只看該作者
K. A. Zayatiguity, inaccuracy, incompleteness and roughness. Accordingly, many different mathematical models for dealing with these uncertainties, like probability, fuzzy set theory, Dempster-Shafer theory of evidence and rough set theory, have been introduced and also applied with great success in many fields
15#
發(fā)表于 2025-3-24 03:59:53 | 只看該作者
16#
發(fā)表于 2025-3-24 08:41:42 | 只看該作者
17#
發(fā)表于 2025-3-24 13:17:26 | 只看該作者
if ..?≡?5 mod 103 has any solutions. Since 5 is not congruent to 3 mod 4, the quadratic reciprocity law asserts that ..?≡?5 mod 103 and ..?≡?103 mod 5 are both solvable or both not. But solution of the latter congruence reduces to ..?≡?3 mod 5, which clearly has no solutions. Hence neither does ..?≡
18#
發(fā)表于 2025-3-24 15:15:18 | 只看該作者
K. A. Zayat in Sect.?. we begin with a discussion of the results from algebraic number theory that will be required, with Dedekind’s Ideal Distribution Theorem as the final goal of this section. The zeta function of an algebraic number field is defined and studied in Sect.?.; in particular, the Euler-Dedekind
19#
發(fā)表于 2025-3-24 20:17:13 | 只看該作者
20#
發(fā)表于 2025-3-25 00:56:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 15:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁河县| 潞城市| 兴文县| 盐亭县| 从江县| 武邑县| 马尔康县| 丹东市| 上虞市| 平邑县| 文昌市| 彭泽县| 湄潭县| 上蔡县| 怀仁县| 洱源县| 南澳县| 涟水县| 宾阳县| 嘉兴市| 许昌市| 罗城| 定安县| 洛浦县| 盘锦市| 湖南省| 沁阳市| 自治县| 霍林郭勒市| 花莲县| 龙门县| 攀枝花市| 唐海县| 额济纳旗| 达州市| 塔河县| 东山县| 龙门县| 宿松县| 邯郸县| 崇义县|