找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochasticity and Quantum Chaos; Proceedings of the 3 Zbigniew Haba,Wojciech Ceg?a,Lech Jakóbczyk Conference proceedings 1995 Kluwer Academ

[復(fù)制鏈接]
樓主: Melanin
21#
發(fā)表于 2025-3-25 03:25:41 | 只看該作者
22#
發(fā)表于 2025-3-25 10:03:50 | 只看該作者
The Quantal Fattening of Fractals,Periodic points of a classical map may belong to a fractal set. It is shown here on a simple model that upon quantising this classical map the influence of the classical periodic points upon the quantal results is the same whether the periodic point belongs to a fractal set, or not. A simple intuitive explanation is given.
23#
發(fā)表于 2025-3-25 12:48:40 | 只看該作者
Chaotic Dynamics in a Periodically Driven Anharmonic Oscillator,Analytical and numerical studies of the classical dynamics of a periodically driven oscillators show the existence of the transition regularity- chaos-regularity. This means that not only at high energy but also at low energy conserve isolated nonlinear resonances in the vicinity of which the motion remains regular.
24#
發(fā)表于 2025-3-25 19:14:34 | 只看該作者
The Ehrenfest Theorem for Markov Diffusions,The transformation connecting transition densities of the diffusion process with the respective Feynman-Kac kernels, induces the local field of accelerations which equals the gradient of the Feynman-Kac potential and becomes the straightforward analog of the Ehrenfest theorem.
25#
發(fā)表于 2025-3-25 23:23:59 | 只看該作者
26#
發(fā)表于 2025-3-26 02:09:20 | 只看該作者
27#
發(fā)表于 2025-3-26 05:47:22 | 只看該作者
28#
發(fā)表于 2025-3-26 11:03:24 | 只看該作者
29#
發(fā)表于 2025-3-26 15:12:43 | 只看該作者
30#
發(fā)表于 2025-3-26 18:21:45 | 只看該作者
Conference proceedings 1995 the Institute of Theoretical Physics of the University of Wroclaw. Max Born was a student and later on an assistant at the University of Wroclaw (Wroclaw belonged to Germany at this time and was called Breslau). The topic of the Max Born Sympo- sium varies each year reflecting the developement of t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 01:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郸城县| 万全县| 六盘水市| 昔阳县| 汉沽区| 句容市| 绥化市| 黄龙县| 铅山县| 阿瓦提县| 扬州市| 蓝田县| 永安市| 磐石市| 东源县| 津南区| 嘉兴市| 防城港市| 天台县| 襄樊市| 巴林左旗| 苍溪县| 专栏| 西丰县| 防城港市| 棋牌| 收藏| 鄯善县| 临海市| 连城县| 万安县| 信丰县| 明溪县| 依安县| 长海县| 延寿县| 祁门县| 吴川市| 新邵县| 丰台区| 静乐县|