找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Neutron Transport; And Non-Local Branch Emma Horton,Andreas E. Kyprianou Book 2023 The Editor(s) (if applicable) and The Author(

[復制鏈接]
樓主: 古生物學
11#
發(fā)表于 2025-3-23 12:41:01 | 只看該作者
12#
發(fā)表于 2025-3-23 17:15:34 | 只看該作者
13#
發(fā)表于 2025-3-23 18:24:46 | 只看該作者
14#
發(fā)表于 2025-3-23 23:24:34 | 只看該作者
15#
發(fā)表于 2025-3-24 02:24:55 | 只看該作者
16#
發(fā)表于 2025-3-24 06:34:31 | 只看該作者
Classical Neutron Transport Theorymily of radiation transport equations, all of which are variants of a general category of Boltzmann transport equations. Our objective in this book is to assemble some of the main mathematical ideas around neutron transport and their relationship with the modern theory of branching Markov processes.
17#
發(fā)表于 2025-3-24 11:35:09 | 只看該作者
Some Background Markov Process Theoryepeatedly in our calculations. After a brief reminder of some basics around the Markov property, we will focus our attention on what we will call expectation semigroups. These are the tools that we will use to identify neutron density and provide an alternative representation of solutions to the NTE
18#
發(fā)表于 2025-3-24 15:13:22 | 只看該作者
19#
發(fā)表于 2025-3-24 20:50:52 | 只看該作者
Many-to-One, Perron–Frobenius and Criticalityl in this respect is to understand how to provide a rigorous analogue of the spectral asymptotic behaviour given in Theorem . for the NTE as an . solution but now for the setting of . solutions that emerge from our mild NTE formulation (.). The way we will do this is to draw the general Perron–Frobe
20#
發(fā)表于 2025-3-24 23:42:22 | 只看該作者
Pál–Bell Equation and Moment Growth we can glean about the NBP from the NTE. Recall that the NBP is fundamentally our physical model of fission in an inhomogeneous material and so many questions will go beyond what linear equations can tell us. In this respect, our starting point is the Pál–Bell equation, a non-linear equation which
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 22:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
颍上县| 青冈县| 且末县| 卢龙县| 论坛| 漠河县| 宜兰县| 蓝田县| 长寿区| 凤翔县| 彭山县| 和林格尔县| 禹城市| 邹平县| 香河县| 广平县| 中卫市| 丰顺县| 白河县| 江川县| 利川市| 商都县| 建水县| 文山县| 秦皇岛市| 襄城县| 临桂县| 大连市| 阳新县| 吉木乃县| 陕西省| 灵寿县| 贵溪市| 丹寨县| 彰武县| 临城县| 奉新县| 思南县| 中超| 天祝| 资阳市|