找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Methods and Computer Techniques in Quantum Dynamics; Proceedings of the X H. Mitter (Chairman),L. Pittner Conference proceedings

[復(fù)制鏈接]
樓主: cerebellum
51#
發(fā)表于 2025-3-30 11:18:22 | 只看該作者
Stochastic Differential Equations,its use as a calculational tool. We also discuss recently developed (matrix) continued fraction methods for solving certain types of stochastic differential equations and their associated Fokker-Planck equation [4–6].
52#
發(fā)表于 2025-3-30 14:06:45 | 只看該作者
Trapping for Newtonian Diffusion Processes,nsider a special class of diffusion processes, which we call Newtonian diffusions. This name is justified by the fact that such a diffusion process satisfies a Newton law in the mean. We will see how it is possible to define a mean stochastic acceleration a for diffusion processes. The Newton law in
53#
發(fā)表于 2025-3-30 18:40:47 | 只看該作者
54#
發(fā)表于 2025-3-30 20:43:47 | 只看該作者
Non-Standard Analysis; Polymer Models, Quantum Fields,with J. E. Fenstad, R. H?egh-Krohn and T. Lindstr?m. In particular we give a discussion of an hyperfinite theory of Dirichlet forms with applications to the study of the Hamiltonian for a quantum mechanical particle in the potential created by a polymer. We also discuss new results on the existence
55#
發(fā)表于 2025-3-31 01:52:10 | 只看該作者
56#
發(fā)表于 2025-3-31 05:40:25 | 只看該作者
Semiclassical and High-Temperature Expansions for Systems with Magnetic Field, we give an equation for the WKB-approxi- mation for such systems. Furthermore, we provide recursion relations and an efficient diagrammatic method, based on functional integration techniques,to calculate explicitly the coefficients in these expansions. Finally, we briefly indicate the connection be
57#
發(fā)表于 2025-3-31 10:21:15 | 只看該作者
58#
發(fā)表于 2025-3-31 16:14:35 | 只看該作者
59#
發(fā)表于 2025-3-31 19:05:32 | 只看該作者
60#
發(fā)表于 2025-3-31 22:28:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 19:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
申扎县| 镇沅| 绥棱县| 师宗县| 安乡县| 拉萨市| 乐山市| 革吉县| 伊吾县| 南华县| 成武县| 永定县| 门头沟区| 吉安市| 星座| 兴海县| 桂平市| 温州市| 石景山区| 北碚区| 牡丹江市| 樟树市| 武山县| 清原| 溧水县| 武威市| 巴林左旗| 和静县| 霍邱县| 汉源县| 饶河县| 梓潼县| 黄浦区| 天台县| 鄂州市| 毕节市| 高碑店市| 安乡县| 龙门县| 梁平县| 绥阳县|