找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Equations and Differential Geometry; Ya. I. Belopolskaya,Yu. L. Dalecky Book 1990 Springer Science+Business Media Dordrecht 199

[復(fù)制鏈接]
樓主: 存貨清單
11#
發(fā)表于 2025-3-23 12:15:57 | 只看該作者
Ya. I. Belopolskaya,Yu. L. Daleckyhat it means to be a part of the imagined community of America. Religious factors ground any story about what America is, and now we will burrow deeper into the connection of religion and narrative and point out that the relationship is complex. Jonathan Z. Smith has argued that there are two ways t
12#
發(fā)表于 2025-3-23 16:05:15 | 只看該作者
13#
發(fā)表于 2025-3-23 20:50:16 | 只看該作者
Stochastic Equations on Smooth Manifolds,chastic equation is compatible with this structure. Finally, we shall construct formal differential extensions of stochastic equations and prove that the solutions of the equations on the considered manifold are smooth with respect to the initial values under some assumptions.
14#
發(fā)表于 2025-3-23 23:57:35 | 只看該作者
Diffusion Processes on Lie Groups and Principal Fibre Bundles,ere . is a principal fibre bundle over a certain manifold . with . the structural group of . : . → .. The most interesting in those two cases are equations with invariant (under actions of the group .) coefficients.
15#
發(fā)表于 2025-3-24 04:06:09 | 只看該作者
Stochastic Equations in Banach Spaces,hastic analysis, or stochastic calculus, in Banach spaces with smooth norms. We have tried to make the exposition detailed enough and adjusted to our future needs while dealing with smooth Banach manifolds.
16#
發(fā)表于 2025-3-24 09:01:13 | 只看該作者
17#
發(fā)表于 2025-3-24 13:53:16 | 只看該作者
18#
發(fā)表于 2025-3-24 15:08:59 | 只看該作者
19#
發(fā)表于 2025-3-24 20:02:20 | 只看該作者
20#
發(fā)表于 2025-3-25 02:11:28 | 只看該作者
Stochastic Equations in Banach Spaces,hastic analysis, or stochastic calculus, in Banach spaces with smooth norms. We have tried to make the exposition detailed enough and adjusted to our future needs while dealing with smooth Banach manifolds.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陕西省| 十堰市| 上饶县| 澜沧| 四子王旗| 赫章县| 方正县| 化德县| 高雄市| 杨浦区| 锡林浩特市| 京山县| 通道| 资溪县| 突泉县| 宁海县| 新源县| 常宁市| 札达县| 左云县| 东莞市| 阳城县| 岱山县| 西昌市| 芷江| 汝州市| 承德市| 扬中市| 连江县| 桃江县| 体育| 介休市| 化德县| 定州市| 宜黄县| 固阳县| 阳城县| 武定县| 洪雅县| 双桥区| 图木舒克市|