找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Differential Equations; An Introduction with Bernt ?ksendal Textbook 19954th edition Springer-Verlag Berlin Heidelberg 1995 Equa

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:19:24 | 只看該作者
12#
發(fā)表于 2025-3-23 16:50:51 | 只看該作者
Some Mathematical Preliminaries,Having stated the problems we would like to solve, we now proceed to find reasonable mathematical notions corresponding to the quantities mentioned and mathematical models for the problems. In short, here is a first list of the notions that need a mathematical interpretation:
13#
發(fā)表于 2025-3-23 19:47:28 | 只看該作者
14#
發(fā)表于 2025-3-24 01:21:54 | 只看該作者
Stochastic Differential Equations,We now return to the possible solutions .. (.) of the stochastic differential equation.where .. is 1-dimensional “white noise”. As discussed in Chapter III the Ito interpretation of (5.1) is that .. satisfies the stochastic integral equation.or in differential form
15#
發(fā)表于 2025-3-24 06:12:33 | 只看該作者
16#
發(fā)表于 2025-3-24 08:08:11 | 只看該作者
Other Topics in Diffusion Theory,In this chapter we study some other important topics in diffusion theory and related areas. While not strictly necessary for the remaining chapters, these topics are central in the theory of stochastic analysis and essential for further applications. The following topics will be treated:
17#
發(fā)表于 2025-3-24 12:35:20 | 只看該作者
Applications to Boundary Value Problems,We now use the preceding results to solve the following generalization of the Dirichlet problem stated in the introduction:
18#
發(fā)表于 2025-3-24 16:16:44 | 只看該作者
Application to Optimal Stopping,Problem 5 in the introduction is a special case of a problem of the following type:
19#
發(fā)表于 2025-3-24 19:15:36 | 只看該作者
20#
發(fā)表于 2025-3-24 23:35:44 | 只看該作者
Stochastic Differential Equations978-3-662-03185-8Series ISSN 0172-5939 Series E-ISSN 2191-6675
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 10:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀远县| 定西市| 荃湾区| 鹤庆县| 商水县| 中阳县| 仪陇县| 繁峙县| 盐池县| 桂平市| 呼图壁县| 西昌市| 黄浦区| 阿荣旗| 湘乡市| 康保县| 获嘉县| 黔南| 东阿县| 东乌| 阿拉善左旗| 卢氏县| 北海市| 砚山县| 夏河县| 洪洞县| 佛学| 黑河市| 辛集市| 罗城| 安陆市| 苏尼特右旗| 铁岭市| 黑龙江省| 化德县| 宣汉县| 石狮市| 宁武县| 荆门市| 汉中市| 沐川县|