找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Analysis, Filtering, and Stochastic Optimization; A Commemorative Volu George Yin,Thaleia Zariphopoulou Book 2022 The Editor(s)

[復(fù)制鏈接]
樓主: 爆發(fā)
41#
發(fā)表于 2025-3-28 15:46:56 | 只看該作者
42#
發(fā)表于 2025-3-28 19:06:55 | 只看該作者
43#
發(fā)表于 2025-3-28 23:42:02 | 只看該作者
44#
發(fā)表于 2025-3-29 04:49:15 | 只看該作者
45#
發(fā)表于 2025-3-29 08:58:57 | 只看該作者
Pathwise Approximations for the Solution of the Non-Linear Filtering Problem,arlier work of Clark [2] and Davis [10, 11] and prove their robustness property. In particular, we show that the high order discretised filtering functionals can be represented by Lipschitz continuous functions defined on the observation path space. This property is important from the practical poin
46#
發(fā)表于 2025-3-29 13:33:13 | 只看該作者
47#
發(fā)表于 2025-3-29 18:08:47 | 只看該作者
Estimating the Matthew Effects: Switching Pareto Dynamics,y are sometimes generated by counting processes whose rate depends on external factors. In turn, these factors are modelled by a finite state Markov chain .. New filters are derived which estimate . together with other parameters of the model.
48#
發(fā)表于 2025-3-29 20:34:07 | 只看該作者
,Optimal Couplings on Wiener Space and An Extension of Talagrand’s Transport Inequality,ined in terms of the Cameron-Martin norm, and where .(.|.) denotes the relative entropy with respect to Wiener measure .. Talagrand’s original proof takes a bottom-up approach, using finite-dimensional approximations. As shown by Feyel and üstünel in [3] and Lehec in [10], the inequality can also be
49#
發(fā)表于 2025-3-30 00:34:48 | 只看該作者
Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation,optimal for the same agent in the future. If the agent is aware of this intra-personal conflict but unable to commit herself in the future to following the optimal plan today, the rational strategy for her today is to reconcile with her future selves, namely to correctly anticipate her actions in th
50#
發(fā)表于 2025-3-30 07:45:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蓬安县| 海原县| 施秉县| 阿拉善右旗| 博罗县| 永城市| 黑河市| 桐柏县| 漳浦县| 石家庄市| 明溪县| 古交市| 玛纳斯县| 宾川县| 蒙阴县| 酉阳| 宣城市| 柞水县| 新邵县| 晋城| 茶陵县| 河间市| 耒阳市| 西青区| 五莲县| 云南省| 富锦市| 赤水市| 舒兰市| 阳山县| 保德县| 高唐县| 上林县| 府谷县| 金坛市| 民县| 屯昌县| 台湾省| 三门县| 湘阴县| 县级市|