找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Statistical Learning Tools for Electricity Load Forecasting; Anestis Antoniadis,Jairo Cugliari,Jean-Michel Pogg Book 2024 The Editor(s) (i

[復(fù)制鏈接]
樓主: 宗派
31#
發(fā)表于 2025-3-26 23:33:08 | 只看該作者
Introduction,sis on their functional data analysis aspect. The book should be useful beyond the electrical context because it discusses methods and models that extend to other applications, such as forecasting of seasonal phenomena, possibly influenced by external factors (e.g., call centers activity, public hot water supply, airport passenger traffic, etc.).
32#
發(fā)表于 2025-3-27 04:02:12 | 只看該作者
Aggregation of Expertsstic assumptions are made on the data generative process, and the theoretical developments are based on the theory of individual sequences where the goal is to derive aggregation strategies achieving good forecasting results on all sequences of observations.
33#
發(fā)表于 2025-3-27 05:58:28 | 只看該作者
34#
發(fā)表于 2025-3-27 11:50:01 | 只看該作者
35#
發(fā)表于 2025-3-27 17:41:35 | 只看該作者
Forecasting Daily Peak Demand Using GAMse same time resolution as the demand (e.g., half-hourly temperatures) or less frequently (e.g., the day of the week). Here we consider the problem of forecasting the size and time of the daily peak demand which are, of course, observed on a daily basis, using covariates that are observed more frequently.
36#
發(fā)表于 2025-3-27 21:48:58 | 只看該作者
37#
發(fā)表于 2025-3-28 00:13:33 | 只看該作者
Introduction,ial and scientific applications. We illustrate the basic theory and practical utility of several up-to-date statistical methods, with particular emphasis on their functional data analysis aspect. The book should be useful beyond the electrical context because it discusses methods and models that ext
38#
發(fā)表于 2025-3-28 03:52:34 | 只看該作者
Additive Modelling of Electricity Demand with se distribution and several covariates is modelled nonparametrically, typically via spline bases expansions. Here we focus on standard GAMs, where only one parameter of the response distribution (typically controlling the mean or location) is modelled additively, while the remaining parameters do no
39#
發(fā)表于 2025-3-28 08:46:56 | 只看該作者
40#
發(fā)表于 2025-3-28 12:49:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建德市| 柳州市| 青冈县| 酒泉市| 宁蒗| 南部县| 望谟县| 洞头县| 台湾省| 青川县| 南开区| 县级市| 巴彦县| 若尔盖县| 蒙城县| 余庆县| 江城| 桓仁| 霍林郭勒市| 竹北市| 太谷县| 云南省| 永川市| 太湖县| 漳平市| 河间市| 博白县| 沿河| 吉水县| 堆龙德庆县| 治县。| 西充县| 盐津县| 哈巴河县| 孝义市| 蚌埠市| 新兴县| 临泽县| 南陵县| 于都县| 綦江县|