找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stable Homotopy Theory; Lectures delivered a J. Frank Adams Book 19641st edition Springer-Verlag Berlin Heidelberg 1964 Division.Homologica

[復(fù)制鏈接]
樓主: Baleful
21#
發(fā)表于 2025-3-25 04:40:13 | 只看該作者
22#
發(fā)表于 2025-3-25 09:07:35 | 只看該作者
Book 19641st edition(‘IT"r(SO)) = 2m where m 1s exactly this denominator. status of conJectuI‘e ~ No proof in sight. Q9njecture Eo If I‘ = 8k or 8k + 1, so that ‘IT"r(SO) = Z2‘ then J(‘IT"r(SO)) = 2 , 2 status of conjecture: Probably provable, but this is work in progl‘ess.
23#
發(fā)表于 2025-3-25 13:41:52 | 只看該作者
24#
發(fā)表于 2025-3-25 18:52:50 | 只看該作者
25#
發(fā)表于 2025-3-25 23:10:50 | 只看該作者
26#
發(fā)表于 2025-3-26 04:10:01 | 只看該作者
Book 19641st editioneory where we strongly suspect that there is something systematic going on, but where we are not yet sure what the system is. The first question concerns the stable J-homomorphism. I recall that this is a homomorphism J: ~ (SQ) ~ ~S = ~ + (Sn), n large. r r r n It is of interest to the differential
27#
發(fā)表于 2025-3-26 05:20:26 | 只看該作者
Primary operations,uch as the celebrated Steenrod square. I recall that this is a homomorphism . defined for each pair (X,Y) and for all non-negative integers i and n. (H. is to be interpreted as singular cohomology.) The Steenrod square enjoys the following properties:
28#
發(fā)表于 2025-3-26 09:18:29 | 只看該作者
Primary operations,ow that a proposed geometric construction is impossible, you have to find a topological invariant which shows the impossibility. Among topological invariants we meet first the homology and cohomology groups, with their additive and multiplicative structure. Afte that we meet cohomology operations, s
29#
發(fā)表于 2025-3-26 15:32:03 | 只看該作者
30#
發(fā)表于 2025-3-26 19:12:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 00:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平乡县| 扬中市| 尉氏县| 新晃| 南城县| 巨野县| 八宿县| 阳泉市| 祥云县| 安徽省| 张家川| 安塞县| 秭归县| 清苑县| 乐陵市| 波密县| 抚松县| 渝北区| 高清| 淮安市| 稻城县| 泰来县| 万盛区| 深圳市| 出国| 潜山县| 张家界市| 沐川县| 翁源县| 古田县| 开原市| 绥中县| 荆门市| 金寨县| 唐山市| 乌海市| 内黄县| 广德县| 沙田区| 丰台区| 和顺县|