找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stable Homotopy Theory; Lectures delivered a J. Frank Adams Book 19641st edition Springer-Verlag Berlin Heidelberg 1964 Division.Homologica

[復(fù)制鏈接]
樓主: Baleful
21#
發(fā)表于 2025-3-25 04:40:13 | 只看該作者
22#
發(fā)表于 2025-3-25 09:07:35 | 只看該作者
Book 19641st edition(‘IT"r(SO)) = 2m where m 1s exactly this denominator. status of conJectuI‘e ~ No proof in sight. Q9njecture Eo If I‘ = 8k or 8k + 1, so that ‘IT"r(SO) = Z2‘ then J(‘IT"r(SO)) = 2 , 2 status of conjecture: Probably provable, but this is work in progl‘ess.
23#
發(fā)表于 2025-3-25 13:41:52 | 只看該作者
24#
發(fā)表于 2025-3-25 18:52:50 | 只看該作者
25#
發(fā)表于 2025-3-25 23:10:50 | 只看該作者
26#
發(fā)表于 2025-3-26 04:10:01 | 只看該作者
Book 19641st editioneory where we strongly suspect that there is something systematic going on, but where we are not yet sure what the system is. The first question concerns the stable J-homomorphism. I recall that this is a homomorphism J: ~ (SQ) ~ ~S = ~ + (Sn), n large. r r r n It is of interest to the differential
27#
發(fā)表于 2025-3-26 05:20:26 | 只看該作者
Primary operations,uch as the celebrated Steenrod square. I recall that this is a homomorphism . defined for each pair (X,Y) and for all non-negative integers i and n. (H. is to be interpreted as singular cohomology.) The Steenrod square enjoys the following properties:
28#
發(fā)表于 2025-3-26 09:18:29 | 只看該作者
Primary operations,ow that a proposed geometric construction is impossible, you have to find a topological invariant which shows the impossibility. Among topological invariants we meet first the homology and cohomology groups, with their additive and multiplicative structure. Afte that we meet cohomology operations, s
29#
發(fā)表于 2025-3-26 15:32:03 | 只看該作者
30#
發(fā)表于 2025-3-26 19:12:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 04:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德昌县| 高雄县| 满城县| 兴海县| 黑水县| 庐江县| 广饶县| 长顺县| 齐齐哈尔市| 杭州市| 微山县| 星子县| 斗六市| 突泉县| 阳江市| 海晏县| 昌邑市| 呼图壁县| 石阡县| 乾安县| 延安市| 宣化县| 泌阳县| 镇坪县| 宁晋县| 永定县| 普兰县| 乳源| 鞍山市| 嘉祥县| 舒兰市| 方城县| 怀集县| 永仁县| 通海县| 甘孜| 曲阜市| 焦作市| 竹山县| 黑山县| 彝良县|