找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stable Homotopy Around the Arf-Kervaire Invariant; Victor P. Snaith Book 2009 Birkh?user Basel 2009 Adams operation.Algebraic topology.Arf

[復(fù)制鏈接]
查看: 44650|回復(fù): 43
樓主
發(fā)表于 2025-3-21 16:11:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Stable Homotopy Around the Arf-Kervaire Invariant
編輯Victor P. Snaith
視頻videohttp://file.papertrans.cn/876/875439/875439.mp4
概述Introduction of the new “upper triangular technology” method.Detailed application of upper triangular technology to operations in algebraic K-theory and to the Arf-Kervaire invariant problem..An accou
叢書名稱Progress in Mathematics
圖書封面Titlebook: Stable Homotopy Around the Arf-Kervaire Invariant;  Victor P. Snaith Book 2009 Birkh?user Basel 2009 Adams operation.Algebraic topology.Arf
描述Were I to take an iron gun, And ?re it o? towards the sun; I grant ‘twould reach its mark at last, But not till many years had passed. But should that bullet change its force, And to the planets take its course, ‘Twould never reach the nearest star, Because it is so very far. from FACTS by Lewis Carroll [55] Let me begin by describing the two purposes which prompted me to write this monograph. This is a book about algebraic topology and more especially about homotopy theory. Since the inception of algebraic topology [217] the study of homotopy classes of continuous maps between spheres has enjoyed a very exc- n n tional, central role. As is well known, for homotopy classes of maps f : S ?? S with n? 1 the sole homotopy invariant is the degree, which characterises the homotopy class completely. The search for a continuous map between spheres of di?erent dimensions and not homotopic to the constant map had to wait for its resolution until the remarkable paper of Heinz Hopf [111]. In retrospect, ?nding 3 an example was rather easy because there is a canonical quotient map from S to 3 1 1 2 theorbitspaceofthe freecircleactionS /S =CP = S .
出版日期Book 2009
關(guān)鍵詞Adams operation; Algebraic topology; Arf-Kervaire invariant; Homotopy; K-theory; algebraic K-theory; homot
版次1
doihttps://doi.org/10.1007/978-3-7643-9904-7
isbn_ebook978-3-7643-9904-7Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Basel 2009
The information of publication is updating

書目名稱Stable Homotopy Around the Arf-Kervaire Invariant影響因子(影響力)




書目名稱Stable Homotopy Around the Arf-Kervaire Invariant影響因子(影響力)學(xué)科排名




書目名稱Stable Homotopy Around the Arf-Kervaire Invariant網(wǎng)絡(luò)公開度




書目名稱Stable Homotopy Around the Arf-Kervaire Invariant網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Stable Homotopy Around the Arf-Kervaire Invariant被引頻次




書目名稱Stable Homotopy Around the Arf-Kervaire Invariant被引頻次學(xué)科排名




書目名稱Stable Homotopy Around the Arf-Kervaire Invariant年度引用




書目名稱Stable Homotopy Around the Arf-Kervaire Invariant年度引用學(xué)科排名




書目名稱Stable Homotopy Around the Arf-Kervaire Invariant讀者反饋




書目名稱Stable Homotopy Around the Arf-Kervaire Invariant讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:19:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:03:51 | 只看該作者
地板
發(fā)表于 2025-3-22 05:22:56 | 只看該作者
5#
發(fā)表于 2025-3-22 09:08:18 | 只看該作者
6#
發(fā)表于 2025-3-22 13:27:29 | 只看該作者
7#
發(fā)表于 2025-3-22 19:48:50 | 只看該作者
8#
發(fā)表于 2025-3-22 21:26:30 | 只看該作者
examen toch toeslaat, kun je jezelf technieken leren om de baas te worden over je eigen angst. In dit boek wordt besproken hoe je in die situatie effectief met angst kunt omgaan en wat je moet doen als je gezakt bent.Leven met rijexamenangst verschijnt in de reeks Van A tot ggZ.
9#
發(fā)表于 2025-3-23 02:43:36 | 只看該作者
10#
發(fā)表于 2025-3-23 07:12:35 | 只看該作者
ijdens het examen toch toeslaat, kun je jezelf technieken leren om de baas te worden over je eigen angst. In dit boek wordt besproken hoe je in die situatie effectief met angst kunt omgaan en wat je moet doen als je gezakt bent.Leven met rijexamenangst verschijnt in de reeks Van A tot ggZ.978-90-313-4345-4978-90-313-9255-1
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宣威市| 常宁市| 积石山| 南京市| 大英县| 宁陕县| 渝中区| 怀远县| 呼和浩特市| 固始县| 威海市| 舟曲县| 中西区| 兴安县| 化隆| 久治县| 博兴县| 遵义县| 苏尼特右旗| 阜康市| 东源县| 澄城县| 承德县| 逊克县| 金华市| 肥东县| 潍坊市| 龙山县| 东源县| 鸡西市| 东明县| 上虞市| 密山市| 改则县| 哈密市| 石屏县| 河曲县| 绥芬河市| 霞浦县| 灌云县| 托克托县|