找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Spinoza’s Epistemology through a Geometrical Lens; Matthew Homan Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusiv

[復制鏈接]
樓主: 法庭
11#
發(fā)表于 2025-3-23 10:00:40 | 只看該作者
12#
發(fā)表于 2025-3-23 17:28:03 | 只看該作者
978-3-030-76741-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
13#
發(fā)表于 2025-3-23 18:12:57 | 只看該作者
Introduction,knowledge, via an interrogation of the ontology of mathematical entities. I provide relevant background regarding the “mathematization of nature” in the seventeenth century, contrasting different forms of mathematical realism and antirealism, and canvassing the respective views of Descartes, Galileo
14#
發(fā)表于 2025-3-23 23:02:16 | 只看該作者
15#
發(fā)表于 2025-3-24 05:50:14 | 只看該作者
16#
發(fā)表于 2025-3-24 06:53:36 | 只看該作者
Reason and Imagination in Spinozan Science, I address a number of interpretive issues pertaining to reason, including the nature, origin, and adequacy of common notions. I also address the issue of the adequacy of the findings of Spinozan science raised by the role of the imagination therein. Ultimately, I argue for a hypothetico-deductive i
17#
發(fā)表于 2025-3-24 13:07:54 | 只看該作者
18#
發(fā)表于 2025-3-24 17:59:55 | 只看該作者
,Spinoza’s Notions of Essence, distinguishing between common essences at the level of attribute and infinite mode at one extreme, singular essences at the level of finite individuals at the other extreme, and species essences in the middle (which, I argue, exist only as beings of reason). I also clarify Spinoza’s notions of form
19#
發(fā)表于 2025-3-24 21:06:14 | 只看該作者
Intuitive Knowledge: The Perfection of Reason,f which it is capable. With the help of a geometrical example modeled on, but more suggestive than, Spinoza’s fourth proportional example, I argue for a “method interpretation” of the distinction between reason and intuitive knowledge, according to which they differ only in their respective methods
20#
發(fā)表于 2025-3-25 01:49:53 | 只看該作者
Introduction,he seventeenth century, contrasting different forms of mathematical realism and antirealism, and canvassing the respective views of Descartes, Galileo, Gassendi, and Hobbes as representative of the intellectual landscape. I outline my argument for attributing a geometrical realist position to Spinoza and overview the chapters of the book.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 22:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
靖宇县| 阿合奇县| 隆化县| 金阳县| 会昌县| 河东区| 偃师市| 香港 | 孙吴县| 科尔| 瓦房店市| 沅江市| 孝义市| 读书| 昌吉市| 巴林右旗| 纳雍县| 西宁市| 太和县| 竹溪县| 富民县| 洞口县| 永安市| 凤冈县| 平遥县| 大港区| 年辖:市辖区| 腾冲县| 河津市| 张家港市| 大英县| 南郑县| 门头沟区| 吴江市| 前郭尔| 侯马市| 和平县| 太仓市| 邻水| 巴南区| 井冈山市|