找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Spherical Harmonics and Approximations on the Unit Sphere: An Introduction; Kendall Atkinson,Weimin Han Book 2012 Springer-Verlag Berlin H

[復(fù)制鏈接]
樓主: DUCT
11#
發(fā)表于 2025-3-23 11:14:03 | 只看該作者
Preliminaries,The study of spherical harmonics has a long history, over 200 years by now. Classical spherical harmonics on the unit sphere of three dimensional Euclidean space can be viewed as extensions of trigonometric functions on the unit circle.
12#
發(fā)表于 2025-3-23 17:52:38 | 只看該作者
Spherical Harmonics,This chapter presents a theory of spherical harmonics from the viewpoint of invariant linear function spaces on the sphere. It is shown that the system of spherical harmonics is the only system of invariant function spaces that is both complete and closed, and cannot be reduced further.
13#
發(fā)表于 2025-3-23 19:38:52 | 只看該作者
Differentiation and Integration over the Sphere,In this chapter, we discuss some properties and formulas for differentiation and integration involving spherical harmonics.
14#
發(fā)表于 2025-3-23 23:53:36 | 只看該作者
Approximation Theory,For functions of a single variable, there is a rich literature on best approximations by ordinary polynomials and by trigonometric polynomials.
15#
發(fā)表于 2025-3-24 03:31:41 | 只看該作者
Applications: Spectral Methods,This chapter begins with two illustrations of the application of the material from the preceding chapters.
16#
發(fā)表于 2025-3-24 10:17:31 | 只看該作者
17#
發(fā)表于 2025-3-24 14:13:23 | 只看該作者
18#
發(fā)表于 2025-3-24 18:55:32 | 只看該作者
Kendall Atkinson,Weimin Hans in this study is outlined in Table 1. The questionnaire was divided up into four parts; in the first part, the indications were specifled. The number of procedures carried out for each indication was requested. The success rate was then established, the total number of complications observed, and
19#
發(fā)表于 2025-3-24 20:18:57 | 只看該作者
20#
發(fā)表于 2025-3-25 03:07:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 06:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开平市| 安新县| 抚州市| 微博| 六枝特区| 巢湖市| 商洛市| 深圳市| 高邮市| 军事| 南投市| 彰化县| 利辛县| 万盛区| 宝山区| 湖南省| 陈巴尔虎旗| 抚州市| 禄劝| 上饶县| 明光市| 皮山县| 秦皇岛市| 密云县| 双江| 孙吴县| 新泰市| 贵南县| 永和县| 舞钢市| 宁南县| 蕲春县| 盈江县| 新和县| 海原县| 漳州市| 泊头市| 滦平县| 屏山县| 阿合奇县| 乌海市|