找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Sphere Packings, Lattices and Groups; J. H. Conway,N. J. A. Sloane Book 19932nd edition Springer Science+Business Media New York 1993 Dime

[復(fù)制鏈接]
樓主: 根深蒂固
21#
發(fā)表于 2025-3-25 04:49:04 | 只看該作者
J. H. Conway,A. M. Odlyzko,N. J. A. Sloaneird edition) retains the topical structure familiar from its predecessors but has been substantially rewritten, edited and updated to account for the significant body of results that have emerged in the twenty-first century—including developments in:.the existence and uniqueness of solutions;.impact
22#
發(fā)表于 2025-3-25 09:20:46 | 只看該作者
23#
發(fā)表于 2025-3-25 15:08:24 | 只看該作者
Further Connections Between Codes and Lattices,This chapter contains further investigations of the connections between codes and sphere packings. Constructions A and B of Chapter 5 are analyzed in greater detail and are generalized to complex lattices. We also study self-dual codes and lattices and their weight enumerators and theta series.
24#
發(fā)表于 2025-3-25 18:26:28 | 只看該作者
A Characterization of the Leech Lattice,We give a short proof that Leech’s remarkable lattice is characterized by some of its simplest properties.
25#
發(fā)表于 2025-3-25 21:41:29 | 只看該作者
Bounds on Kissing Numbers,Upper bounds are given on the maximal number, τ., of nonoverlapping unit spheres that can touch a unit sphere in .-dimensional Euclidean space, for . ? 24. In particular it is shown that τ. = 240 and τ. = 196560.
26#
發(fā)表于 2025-3-26 00:19:15 | 只看該作者
Enumeration of Unimodular Lattices,In this chapter we state explicit formulae for the Minkowski-Siegel mass constants for unimodular lattices. We give Niemeier’s list of 24-dimensional even unimodular lattices, use the mass constant to verify that it is correct, and then enumerate all unimodular lattices of dimension . ? 23.
27#
發(fā)表于 2025-3-26 06:11:18 | 只看該作者
The 24-Dimensional Odd Unimodular Lattices,This chapter completes the classification of the 24-dimensional unimodular lattices by enumerating the odd lattices. These are in one-to-one correspondence with neighboring pairs of Niemeier lattices.
28#
發(fā)表于 2025-3-26 09:52:45 | 只看該作者
Even Unimodular 24-Dimensional Lattices,Niemeier’s classification of even unimodular 24-dimensional lattices is simplified. The methods involve the theory of modular forms, algebraic coding, and root systems.
29#
發(fā)表于 2025-3-26 14:53:12 | 只看該作者
30#
發(fā)表于 2025-3-26 19:42:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 05:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万山特区| 韩城市| 绥江县| 手游| 凤阳县| 江津市| 安溪县| 富裕县| 泸定县| 大新县| 石城县| 宣化县| 遵义县| 仙居县| 镇安县| 饶河县| 会泽县| 铁岭县| 古浪县| 孝感市| 体育| 泸溪县| 河北省| 阜新市| 永修县| 定结县| 伊吾县| 阳信县| 泸西县| 姚安县| 临泽县| 屯门区| 信宜市| 旺苍县| 千阳县| 安龙县| 宁陕县| 荔波县| 萨迦县| 定日县| 张家界市|