找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Spectroscopic Tricks; Volume 2 Leopold May Book 1971 Plenum Press, New York 1971 Absorption.Atom.Monochromator.NMR.Photometer.Sorption.adso

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 22:53:51 | 只看該作者
32#
發(fā)表于 2025-3-27 01:57:17 | 只看該作者
R. J. Julietti,J. A. E. Wilkinsonduced geometry is Euclidean. In particular, there is no three-dimensional differential geometry leading to an account of non-Euclidean space..Gauss, by contrast, possessed a scientist’s conviction in the possibility of a non-Euclidean geometry which was no less, and no greater, than that of Schweika
33#
發(fā)表于 2025-3-27 05:38:21 | 只看該作者
A. W. Fagan,H. M. Kleinduced geometry is Euclidean. In particular, there is no three-dimensional differential geometry leading to an account of non-Euclidean space..Gauss, by contrast, possessed a scientist’s conviction in the possibility of a non-Euclidean geometry which was no less, and no greater, than that of Schweika
34#
發(fā)表于 2025-3-27 12:19:29 | 只看該作者
35#
發(fā)表于 2025-3-27 16:49:47 | 只看該作者
36#
發(fā)表于 2025-3-27 18:09:20 | 只看該作者
Morris Slavinscribe how these Laguerre geometries can be obtained as subgeometries. As an application of two-dimensional Lie and Laguerre geometry we study the properties of checkerboard incircular nets..978-3-030-81846-3978-3-030-81847-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
37#
發(fā)表于 2025-3-27 22:01:19 | 只看該作者
Z. van Gelderscribe how these Laguerre geometries can be obtained as subgeometries. As an application of two-dimensional Lie and Laguerre geometry we study the properties of checkerboard incircular nets..978-3-030-81846-3978-3-030-81847-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
38#
發(fā)表于 2025-3-28 02:42:31 | 只看該作者
J. Morris,J. M. C. Van Stadenphases, pseudobinary systems, invariant equilibria, liquidus, solidus, and solvus surfaces, isothermal sections, temperature-composition sections, thermodynamics, materials properties and applications, and miscellanea. Finally, a detailed bibliography of all cited references is provided....In the pr
39#
發(fā)表于 2025-3-28 09:14:31 | 只看該作者
40#
發(fā)表于 2025-3-28 12:11:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 20:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
容城县| 铜川市| 青浦区| 博白县| 绥江县| 卓资县| 平武县| 邛崃市| 浙江省| 尤溪县| 衡水市| 晴隆县| 平远县| 富锦市| 安化县| 大安市| 新和县| 太谷县| 云阳县| 乃东县| 福清市| 西乌| 含山县| 美姑县| 虹口区| 胶南市| 平江县| 潞西市| 马尔康县| 中阳县| 霍山县| 牙克石市| 水富县| 吴旗县| 浪卡子县| 海南省| 城口县| 衡南县| 平塘县| 泰顺县| 肥东县|