找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Spectroscopic Tricks; Volume 2 Leopold May Book 1971 Plenum Press, New York 1971 Absorption.Atom.Monochromator.NMR.Photometer.Sorption.adso

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 22:53:51 | 只看該作者
32#
發(fā)表于 2025-3-27 01:57:17 | 只看該作者
R. J. Julietti,J. A. E. Wilkinsonduced geometry is Euclidean. In particular, there is no three-dimensional differential geometry leading to an account of non-Euclidean space..Gauss, by contrast, possessed a scientist’s conviction in the possibility of a non-Euclidean geometry which was no less, and no greater, than that of Schweika
33#
發(fā)表于 2025-3-27 05:38:21 | 只看該作者
A. W. Fagan,H. M. Kleinduced geometry is Euclidean. In particular, there is no three-dimensional differential geometry leading to an account of non-Euclidean space..Gauss, by contrast, possessed a scientist’s conviction in the possibility of a non-Euclidean geometry which was no less, and no greater, than that of Schweika
34#
發(fā)表于 2025-3-27 12:19:29 | 只看該作者
35#
發(fā)表于 2025-3-27 16:49:47 | 只看該作者
36#
發(fā)表于 2025-3-27 18:09:20 | 只看該作者
Morris Slavinscribe how these Laguerre geometries can be obtained as subgeometries. As an application of two-dimensional Lie and Laguerre geometry we study the properties of checkerboard incircular nets..978-3-030-81846-3978-3-030-81847-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
37#
發(fā)表于 2025-3-27 22:01:19 | 只看該作者
Z. van Gelderscribe how these Laguerre geometries can be obtained as subgeometries. As an application of two-dimensional Lie and Laguerre geometry we study the properties of checkerboard incircular nets..978-3-030-81846-3978-3-030-81847-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
38#
發(fā)表于 2025-3-28 02:42:31 | 只看該作者
J. Morris,J. M. C. Van Stadenphases, pseudobinary systems, invariant equilibria, liquidus, solidus, and solvus surfaces, isothermal sections, temperature-composition sections, thermodynamics, materials properties and applications, and miscellanea. Finally, a detailed bibliography of all cited references is provided....In the pr
39#
發(fā)表于 2025-3-28 09:14:31 | 只看該作者
40#
發(fā)表于 2025-3-28 12:11:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 21:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荥经县| 沅陵县| 淮阳县| 化州市| 基隆市| 阿荣旗| 乳山市| 万年县| 苏尼特左旗| 鹤山市| 宝兴县| 崇文区| 同德县| 杭锦旗| 涪陵区| 定远县| 枞阳县| 宜兰县| 孙吴县| 石河子市| 临武县| 化德县| 盐源县| 宜黄县| 伊川县| 深水埗区| 清涧县| 枞阳县| 台安县| 白朗县| 湖州市| 海南省| 铜山县| 揭西县| 子洲县| 会宁县| 澄江县| 东山县| 贵定县| 融水| 米脂县|