找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Spectral Finite Element Method; Wave Propagation, Di S. Gopalakrishnan,A. Chakraborty,D. Roy Mahapatra Book 2008 Springer-Verlag London 200

[復(fù)制鏈接]
樓主: 法庭
21#
發(fā)表于 2025-3-25 06:39:39 | 只看該作者
Solution of Inverse Problems: Source and System Identification, industrial significance. To start with, one important application of the spectral formulation is in solving inverse problems, ., source identification and parameter estimation. Because of the frequency domain formulation of spectral elements, where the input and output responses are algebraically c
22#
發(fā)表于 2025-3-25 10:20:10 | 只看該作者
Application of SFEM to SHM: Simplified Damage Models,d the measured output(s). In composite structures, delamination is the common type of failure. If the size of the delamination is very small, it results in negligible loss of stiffness and hence lower vibrational modes will be least affected. Hence, SHM studies require high frequency content inputs
23#
發(fā)表于 2025-3-25 12:22:16 | 只看該作者
Spectral Finite Element Method for Active Wave Control,s and MEMS has laid the path towards implementation of such concepts. Structures made of multi-functional composites have provided a wide range of platforms for precision sensing, distributed actuation and control related applications. Most of the mathematical frameworks behind the control systems n
24#
發(fā)表于 2025-3-25 18:48:57 | 只看該作者
25#
發(fā)表于 2025-3-25 21:39:25 | 只看該作者
26#
發(fā)表于 2025-3-26 01:39:17 | 只看該作者
27#
發(fā)表于 2025-3-26 07:36:35 | 只看該作者
28#
發(fā)表于 2025-3-26 10:19:09 | 只看該作者
29#
發(fā)表于 2025-3-26 14:53:42 | 只看該作者
Wave Propagation in Two-dimensional Anisotropic Structures,ials can be both anisotropic and inhomogeneous. Further, these systems are required to resist harsh environments, such as impact load, high temperature load, . in their lifetime. Hence, analysis of these layered systems for such loading is important and requires critical attention.
30#
發(fā)表于 2025-3-26 16:52:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 13:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蓬安县| 和林格尔县| 台东市| 桐城市| 枣庄市| 万盛区| 涡阳县| 广灵县| 泰顺县| 仙居县| 黑龙江省| 宁城县| 田林县| 仙游县| 高平市| 新建县| 文化| 绥滨县| 阳春市| 万山特区| 化德县| 余江县| 浮梁县| 望奎县| 泸溪县| 茂名市| 思南县| 米脂县| 高台县| 原平市| 河间市| 巴林右旗| 南汇区| 石台县| 汪清县| 普洱| 花莲市| 万源市| 安化县| 即墨市| 上蔡县|