找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Spaces of Continuous Functions; G.L.M. Groenewegen,A.C.M. van Rooij Book 2016 Atlantis Press and the author(s) 2016 Spaces of Continuous F

[復(fù)制鏈接]
樓主: minutia
31#
發(fā)表于 2025-3-26 22:01:12 | 只看該作者
,Yosida’s Representation Theorem,Our main result, as mentioned in the preamble to Chap. ., is Yosida’s Theorem, characterizing the Riesz spaces that are isomorphic to .(.) for some compact Hausdorff space .. At the background we have Alaoglu’s Theorem, giving us the space . we need.
32#
發(fā)表于 2025-3-27 02:39:53 | 只看該作者
,The Stone-?ech Compactification,When dealing with a metric space it is often useful to form its completion. Similarly, it may be useful to embed a topological space . in a compact Hausdorff space, preferably as a dense subset.
33#
發(fā)表于 2025-3-27 06:30:23 | 只看該作者
Evaluations,Let . be a topological space.
34#
發(fā)表于 2025-3-27 12:49:04 | 只看該作者
35#
發(fā)表于 2025-3-27 15:02:05 | 只看該作者
The Riesz Representation Theorem,The integral of a continuous function on . may be viewed as the average value of that function. Sometimes it is desirable to have at one’s disposal a method of averaging functions on . that gives different weights to different parts of the interval.
36#
發(fā)表于 2025-3-27 19:19:47 | 只看該作者
Banach Algebras,For compact ., .(.) is an ordered vector space. Yosida’s Theorem characterizes those ordered vector spaces that are “isomorphic” with a .(.). In this chapter we obtain an analogous result for a multiplication instead of an ordering.
37#
發(fā)表于 2025-3-28 01:59:58 | 只看該作者
38#
發(fā)表于 2025-3-28 05:52:42 | 只看該作者
39#
發(fā)表于 2025-3-28 09:25:07 | 只看該作者
40#
發(fā)表于 2025-3-28 12:39:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 21:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
方正县| 临西县| 客服| 桃园县| 平潭县| 扎赉特旗| 军事| 岑巩县| 邢台县| 攀枝花市| 都江堰市| 开化县| 遵化市| 乐陵市| 淮阳县| 全南县| 恩平市| 兴仁县| 札达县| 平武县| 板桥市| 灌云县| 黄大仙区| 天全县| 峡江县| 邢台县| 龙游县| 东兰县| 万全县| 丹阳市| 客服| 中卫市| 肥乡县| 泸溪县| 论坛| 来安县| 商城县| 日喀则市| 拜城县| 武夷山市| 岳阳县|