找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Solitons and Chaos; Ioannis Antoniou,Franklin J. Lambert Conference proceedings 1991 Springer-Verlag Berlin Heidelberg 1991 Chaos.Integrab

[復(fù)制鏈接]
樓主: 空格
31#
發(fā)表于 2025-3-26 22:59:40 | 只看該作者
0939-7426 pers cover a wide range of topics butshare common mathematical notions and investigationtechniques. An introductory note on eight conceptsofintegrability has been added as a guide for the uninitiatedreader.Both specialists and graduate students will findthis update on the state ofthe art useful.Key
32#
發(fā)表于 2025-3-27 03:27:03 | 只看該作者
What is the Role of Dynamical Chaos in Irreversible Processes? initial conditions is no longer observed. This irreversibility results into dramatic effects on the large scale properties of matter like diffusion, viscosity, heat or electrical conductivities: the phenomenological equations describing these transport properties like the diffusion equation,.are not time-reversal symmetric.
33#
發(fā)表于 2025-3-27 05:47:34 | 只看該作者
Conference proceedings 1991aos vs. integrability; solitons: theory andapplications; dissipative systems; Hamiltonian systems; mapsandcascades; direct vs. inverse methods; higher dimensions;Lie groups,Painleve analysis, numerical algorithms;pertubation methods.
34#
發(fā)表于 2025-3-27 12:08:15 | 只看該作者
35#
發(fā)表于 2025-3-27 13:59:35 | 只看該作者
36#
發(fā)表于 2025-3-27 20:25:12 | 只看該作者
Soliton Dynamics and Chaos Transition in a Microstructured Lattice Modelesented by means of a method of reduction leading to an equation of motion for the soliton mass center. The problem of the soliton dynamics under the influence of discreteness effects and a time-dependent applied field allows us to show a transition to chaos of the soliton motion.
37#
發(fā)表于 2025-3-28 01:38:03 | 只看該作者
A Propositional Lattice for the Logic of Temporal Predictionsnction. Two respective operator formalisms refer to the Liouville operator . and to an information (or entropy) operator .. Both are incommensurable in the sense of a non-vanishing commutator given by . (Sec.2).
38#
發(fā)表于 2025-3-28 02:48:31 | 只看該作者
39#
發(fā)表于 2025-3-28 09:45:57 | 只看該作者
Research Reports in Physicshttp://image.papertrans.cn/s/image/871682.jpg
40#
發(fā)表于 2025-3-28 11:23:08 | 只看該作者
https://doi.org/10.1007/978-3-642-84570-3Chaos; Integrable Systeme; Integrable Systems; Nichtlineare Dynamik; Nonlinear Dynamics; Solitonen; Solito
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 19:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贡嘎县| 龙游县| 烟台市| 巴林左旗| 江华| 枣庄市| 潼关县| 醴陵市| 开封县| 全南县| 固始县| 麟游县| 南投市| 米脂县| 大余县| 中卫市| 于田县| 上虞市| 彰化市| 中山市| 谢通门县| 瓦房店市| 阿荣旗| 汕头市| 武邑县| 通江县| 汤阴县| 蓬溪县| 龙泉市| 西畴县| 铁岭县| 景谷| 岳普湖县| 澳门| 怀来县| 阜新市| 承德市| 民和| 麻栗坡县| 双鸭山市| 扎兰屯市|