找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: High-Dimensional Covariance Matrix Estimation; An Introduction to R Aygul Zagidullina Book 2021 The Author(s), under exclusive licence to S

[復(fù)制鏈接]
樓主: 法官所用
11#
發(fā)表于 2025-3-23 10:05:21 | 只看該作者
Introduction,cts of the random matrix theory. Although this matrix is commonly used in many fields of study and its properties have long been known in the context of classical statistics, recent advances in computer science and data access have revived interest in studying sample covariance matrix from the rando
12#
發(fā)表于 2025-3-23 17:34:44 | 只看該作者
Summary and Outlook,aditional regime is the basis of classical textbooks’ statistics, while the high-dimensional regime better applies to Big Data context and closely approximates finite sample properties of standard estimators. Therefore, the objectives and contributions of this book are twofold.
13#
發(fā)表于 2025-3-23 22:00:06 | 只看該作者
Traditional Estimators and Standard Asymptotics,We discuss the concept of a random matrix and relate it to the sample covariance matrix estimator. This short review is intended to guide the reader through the classical results.
14#
發(fā)表于 2025-3-23 23:18:16 | 只看該作者
Finite Sample Performance of Traditional Estimators,We demonstrate that well-known multivariate statistical techniques perform poorly and become misleading, when the data dimension . is comparable in magnitude to or larger than the sample size ..
15#
發(fā)表于 2025-3-24 02:51:07 | 只看該作者
Traditional Estimators and High-Dimensional Asymptotics,We introduce and describe various classical and modern theoretical results developed within the random matrix theory domain which are related to the covariance matrix estimation, as well as to the factor structure inference in high-dimensional data.
16#
發(fā)表于 2025-3-24 08:12:05 | 只看該作者
Summary and Outlook,aditional regime is the basis of classical textbooks’ statistics, while the high-dimensional regime better applies to Big Data context and closely approximates finite sample properties of standard estimators. Therefore, the objectives and contributions of this book are twofold.
17#
發(fā)表于 2025-3-24 12:05:34 | 只看該作者
Aygul ZagidullinaPresents random matrix theory and covariance matrix estimation under high-dimensional asymptotics.Demonstrates the deficiencies of the standard statistical tools when applied in high dimensions.Encour
18#
發(fā)表于 2025-3-24 17:41:42 | 只看該作者
19#
發(fā)表于 2025-3-24 20:23:45 | 只看該作者
978-3-030-80064-2The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
20#
發(fā)表于 2025-3-25 01:38:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
琼中| 礼泉县| 岑溪市| 罗城| 平果县| 察雅县| 黄大仙区| 龙胜| 吉安市| 锦州市| 龙井市| 道真| 大足县| 吉水县| 贞丰县| 交城县| 马关县| 易门县| 遂川县| 临桂县| 通化市| 广饶县| 尼木县| 滦南县| 湖北省| 南宁市| 阿拉善左旗| 通许县| 宾川县| 华宁县| 新津县| 元江| 乳源| 怀集县| 平塘县| 镇宁| 邛崃市| 永兴县| 布拖县| 乌兰县| 车致|