找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Sobolev Spaces; with Applications to Vladimir Maz‘ya Book 2011Latest edition Springer-Verlag Berlin Heidelberg 2011 46E35, 42B37, 26D10.Sob

[復(fù)制鏈接]
樓主: HIV763
31#
發(fā)表于 2025-3-26 22:27:48 | 只看該作者
32#
發(fā)表于 2025-3-27 02:40:44 | 只看該作者
978-3-662-51729-1Springer-Verlag Berlin Heidelberg 2011
33#
發(fā)表于 2025-3-27 08:03:22 | 只看該作者
Sobolev Spaces978-3-642-15564-2Series ISSN 0072-7830 Series E-ISSN 2196-9701
34#
發(fā)表于 2025-3-27 09:47:53 | 只看該作者
Grundlehren der mathematischen Wissenschaftenhttp://image.papertrans.cn/s/image/869247.jpg
35#
發(fā)表于 2025-3-27 16:17:43 | 只看該作者
https://doi.org/10.1007/978-3-642-15564-246E35, 42B37, 26D10; Sobolev spaces; general domains; integral inequalities; isoperimetric and isocapaci
36#
發(fā)表于 2025-3-27 20:36:17 | 只看該作者
Integrability of Functions in the Space ,, sufficient for the embedding operator . to be continuous or compact. These criteria are intimately connected with relative isoperimetric inequalities and isoperimetric functions. In Sect.?5.2 we consider the cases .≥1 and 0<.<1 separately.
37#
發(fā)表于 2025-3-28 00:40:39 | 只看該作者
,Capacitary and Trace Inequalities for Functions in ?, with Derivatives of an Arbitrary Order,in ?. and . is the completion of . with respect to the norm ...On the other hand, if?(11.1.1) is valid for any ., then . for all .??...The present chapter contains similar results in which the role of . is played by the spaces ., ., ., ., ., and ..
38#
發(fā)表于 2025-3-28 03:35:39 | 只看該作者
39#
發(fā)表于 2025-3-28 08:58:36 | 只看該作者
Integral Inequality for Functions on a Cube,on in ., .≥1, by?...The inequality . with . in the same interval as in the Sobolev embedding theorem often turns out to be useful. This inequality occurs repeatedly in the following chapters. Obviously,?(14.0.1) is not valid for all ., but it holds provided . is subject to additional requirements.
40#
發(fā)表于 2025-3-28 14:21:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 17:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉鱼县| 松滋市| 丹棱县| 泸溪县| 揭西县| 金门县| 灵川县| 扬中市| 庆城县| 濮阳县| 南昌市| 盐池县| 梧州市| 昆山市| 桂平市| 积石山| 宿州市| 文登市| 都江堰市| 石城县| 嘉义市| 庐江县| 阳春市| 广安市| 怀来县| 志丹县| 温州市| 恩平市| 融水| 泰宁县| 井研县| 皮山县| 福泉市| 长阳| 沽源县| 大石桥市| 石阡县| 尖扎县| 积石山| 和顺县| 呼和浩特市|