找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Sobolev Spaces; with Applications to Vladimir Maz‘ya Book 2011Latest edition Springer-Verlag Berlin Heidelberg 2011 46E35, 42B37, 26D10.Sob

[復(fù)制鏈接]
樓主: HIV763
11#
發(fā)表于 2025-3-23 12:31:29 | 只看該作者
Integrability of Functions in the Space ,, operator ., .≥1, we find necessary and sufficient conditions on . ensuring the continuity of this operator (Sects. 6.2–6.4). To get criteria, analogous to those obtained in Sect.?2.2, for the space ., we introduce classes of sets defined with the aid of the so-called .-conductivity, which plays the
12#
發(fā)表于 2025-3-23 17:03:09 | 只看該作者
,Continuity and Boundedness of Functions in?Sobolev Spaces,, and . where the constant . does not depend on ...A simple example of the function ., .>0, defined on the plane domain ., ν>1, shows that the cone property is essential for the validity of Sobolev’s theorem. We can naturally expect that for sets with “bad” boundaries the embedding . is valid in som
13#
發(fā)表于 2025-3-23 19:38:06 | 只看該作者
14#
發(fā)表于 2025-3-24 01:32:38 | 只看該作者
Space of Functions of Bounded Variation, .??.. This space turned out to be useful in geometric measure theory, the calculus of variations, and the theory of quasilinear partial differential equations. In the present chapter we study the connection between the properties of functions in .(.) and geometric characteristics of the boundary of
15#
發(fā)表于 2025-3-24 05:52:56 | 只看該作者
16#
發(fā)表于 2025-3-24 10:04:56 | 只看該作者
,Capacitary and Trace Inequalities for Functions in ?, with Derivatives of an Arbitrary Order,in ?. and . is the completion of . with respect to the norm ...On the other hand, if?(11.1.1) is valid for any ., then . for all .??...The present chapter contains similar results in which the role of . is played by the spaces ., ., ., ., ., and ..
17#
發(fā)表于 2025-3-24 14:00:31 | 只看該作者
18#
發(fā)表于 2025-3-24 15:11:08 | 只看該作者
Integral Inequality for Functions on a Cube,on in ., .≥1, by?...The inequality . with . in the same interval as in the Sobolev embedding theorem often turns out to be useful. This inequality occurs repeatedly in the following chapters. Obviously,?(14.0.1) is not valid for all ., but it holds provided . is subject to additional requirements.
19#
發(fā)表于 2025-3-24 20:06:41 | 只看該作者
Embedding of the Space , into Other Function Spaces,. In fact, let zero be the image of . in ..(.) and let a sequence {..}. of functions in . converge to . in .. Then for all multi-indices . with |.|=. and for all . . Since the sequence .... converges in ..(.), it tends to zero..The above considerations show that each element of . (for .>.?., .>1
20#
發(fā)表于 2025-3-25 02:34:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 00:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泸定县| 衡东县| 临汾市| 伊春市| 丰顺县| 林甸县| 洛扎县| 化州市| 喀喇| 金乡县| 曲沃县| 商丘市| 苗栗县| 彭泽县| 海晏县| 鄂托克旗| 英吉沙县| 扬州市| 阿拉善左旗| 杨浦区| 镇赉县| 庆城县| 琼海市| 肇源县| 襄樊市| 德清县| 宁津县| 腾冲县| 涟水县| 历史| 渝北区| 勃利县| 高尔夫| 玉田县| 临泽县| 崇仁县| 堆龙德庆县| 遂溪县| 阿坝| 汝南县| 廊坊市|