找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Smart Cities: Big Data Prediction Methods and Applications; Hui Liu Book 2020 Springer Nature Singapore Pte Ltd. 2020 Smart Cities.Big Dat

[復(fù)制鏈接]
樓主: 指責(zé)
21#
發(fā)表于 2025-3-25 06:53:51 | 只看該作者
http://image.papertrans.cn/s/image/868665.jpg
22#
發(fā)表于 2025-3-25 09:35:38 | 只看該作者
23#
發(fā)表于 2025-3-25 14:13:17 | 只看該作者
978-981-15-2839-2Springer Nature Singapore Pte Ltd. 2020
24#
發(fā)表于 2025-3-25 17:14:34 | 只看該作者
Hui LiuBroadens readers‘ understanding of the smart cities.Describes in detail the latest theories and specific applications of smart time series prediction methods in smart cities, as well as a big data fra
25#
發(fā)表于 2025-3-26 00:03:21 | 只看該作者
scientists, engineers, college students, postgraduates, teachers and managers from various fields of artificial intelligence, smart cities, smart grid, intelligent traffic systems, intelligent environments and big data computing..978-981-15-2839-2978-981-15-2837-8
26#
發(fā)表于 2025-3-26 03:05:40 | 只看該作者
, and presents a wide range of applications to allow readers to understand the role of facility location in such areas and learn how to handle real-world location problems..The book is intend978-3-030-32179-6978-3-030-32177-2
27#
發(fā)表于 2025-3-26 04:35:40 | 只看該作者
stic location problems..The book is intended for researchers working on theory and applications involving location problems and models. It is also suitable as a textbook for graduate courses on facility locatio978-3-319-34290-0978-3-319-13111-5
28#
發(fā)表于 2025-3-26 08:36:21 | 只看該作者
Prediction Model of Traffic Flow Driven Based on Single Data in Smart Traffic Systemse WD-BP predictive model is higher than the BP predictive model in the deterministic forecast of traffic flow. In the interval prediction of traffic flow, BP neural network is used to establish a deterministic prediction model, and the GARCH model is used to calculate the uncertainty of forecasting
29#
發(fā)表于 2025-3-26 12:39:06 | 只看該作者
Prediction Models of Urban Air Quality in Smart Environment compared and analyzed. The results show that the prediction of pollutant concentrations after effectively extracting the main characteristics of air pollution is feasible. On this basis, this chapter also puts forward the big data calculation framework of two air pollution prediction models as a re
30#
發(fā)表于 2025-3-26 17:19:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 15:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马关县| 济阳县| 凉城县| 古浪县| 玛曲县| 婺源县| 武强县| 天祝| 浮山县| 莫力| 尉犁县| 天水市| 遂昌县| 寻甸| 老河口市| 南通市| 靖远县| 清流县| 抚顺市| 桑日县| 射洪县| 万山特区| 正安县| 平果县| 吴桥县| 兴业县| 迭部县| 天津市| 安陆市| 芷江| 普陀区| 五峰| 固镇县| 甘洛县| 舒城县| 宜阳县| 三原县| 高安市| 郁南县| 嘉兴市| 鄄城县|