找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Singularities and Low Dimensional Topology; Javier Fernández de Bobadilla,Marco Marengon,Andrá Book 2024 The Editor(s) (if applicable) and

[復制鏈接]
樓主: detumescence
11#
發(fā)表于 2025-3-23 11:07:03 | 只看該作者
Singularities and Low Dimensional Topology978-3-031-56611-0Series ISSN 1217-4696 Series E-ISSN 2947-9460
12#
發(fā)表于 2025-3-23 15:06:59 | 只看該作者
A Knot-Theoretic Tour of Dimension Four,These notes provide a written account of the lecture series held as part of the Singularities and low dimensional topology winter school at the Rényi Institute in January 2023.
13#
發(fā)表于 2025-3-23 19:25:38 | 只看該作者
Severi Strata of Plane Curve Singularities,Examples of algebraic curves with singularities are known since antiquity. The cubic curve called the ., that was used to solve the Delian problem, exhibits a proud cusp at its origin. The ., used for the trisection of an arbitrary angle, contains a node or a cusp, depending on the value of a parameter.
14#
發(fā)表于 2025-3-24 00:35:59 | 只看該作者
15#
發(fā)表于 2025-3-24 05:35:55 | 只看該作者
16#
發(fā)表于 2025-3-24 08:16:06 | 只看該作者
Spectra in Khovanov and Knot Floer Theories,Invariants of knots and links witnessed an unparalleled development in the past couple of decades.
17#
發(fā)表于 2025-3-24 12:16:06 | 只看該作者
18#
發(fā)表于 2025-3-24 14:54:54 | 只看該作者
Heegaard Floer Homology,ount of time. As a result, we will inevitably be vague at times and omit details that the expert will find important. We will also have to omit or glide over many significant contributions by members of the Floer theory community, and the reader is encouraged to fill in these gaps by consulting other references.
19#
發(fā)表于 2025-3-24 21:18:47 | 只看該作者
20#
發(fā)表于 2025-3-25 02:48:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 21:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
菏泽市| 彭州市| 洮南市| 从江县| 普洱| 五莲县| 大安市| 新丰县| 南昌县| 婺源县| 耿马| 烟台市| 镇宁| 林甸县| 双流县| 安西县| 东至县| 舟曲县| 长宁区| 安达市| 秀山| 通河县| 宜城市| 曲阳县| 宁国市| 阳信县| 云龙县| 云霄县| 汝南县| 华坪县| 玉龙| 正安县| 麻栗坡县| 肇东市| 澜沧| 陇西县| 洛南县| 宽甸| 宜都市| 永泰县| 霞浦县|